blob: ee8026995b7baa55e7e2041b1eb1ceed2e88c8d9 [file] [log] [blame]
/* gap.c - Bluetooth GAP Tester */
/*
* Copyright (c) 2015-2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/sys/atomic.h>
#include <zephyr/types.h>
#include <string.h>
#include <zephyr/toolchain.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/conn.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/net/buf.h>
#include <hci_core.h>
#include <zephyr/logging/log.h>
#define LOG_MODULE_NAME bttester_gap
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include "bttester.h"
#define CONTROLLER_INDEX 0
#define CONTROLLER_NAME "btp_tester"
#define BT_LE_AD_DISCOV_MASK (BT_LE_AD_LIMITED | BT_LE_AD_GENERAL)
#define ADV_BUF_LEN (sizeof(struct gap_device_found_ev) + 2 * 31)
static atomic_t current_settings;
struct bt_conn_auth_cb cb;
static uint8_t oob_legacy_tk[16] = { 0 };
#if !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY)
static struct bt_le_oob oob_sc_local = { 0 };
static struct bt_le_oob oob_sc_remote = { 0 };
#endif /* !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY) */
/* connection parameters for rejection test */
#define REJECT_INTERVAL_MIN 0x0C80
#define REJECT_INTERVAL_MAX 0x0C80
#define REJECT_LATENCY 0x0000
#define REJECT_SUPERVISION_TIMEOUT 0x0C80
#if defined(CONFIG_BT_PRIVACY)
static struct {
bt_addr_le_t addr;
bool supported;
} cars[CONFIG_BT_MAX_PAIRED];
static uint8_t read_car_cb(struct bt_conn *conn, uint8_t err,
struct bt_gatt_read_params *params, const void *data,
uint16_t length);
static struct bt_gatt_read_params read_car_params = {
.func = read_car_cb,
.by_uuid.uuid = BT_UUID_CENTRAL_ADDR_RES,
.by_uuid.start_handle = BT_ATT_FIRST_ATTRIBUTE_HANDLE,
.by_uuid.end_handle = BT_ATT_LAST_ATTRIBUTE_HANDLE,
};
static uint8_t read_car_cb(struct bt_conn *conn, uint8_t err,
struct bt_gatt_read_params *params, const void *data,
uint16_t length)
{
struct bt_conn_info info;
bool supported = false;
if (!err && data && length == 1) {
const uint8_t *tmp = data;
/* only 0 or 1 are valid values */
if (tmp[0] == 1) {
supported = true;
}
}
bt_conn_get_info(conn, &info);
for (int i = 0; i < CONFIG_BT_MAX_PAIRED; i++) {
if (bt_addr_le_cmp(info.le.dst, &cars[i].addr) == 0) {
cars[i].supported = supported;
break;
}
}
return BT_GATT_ITER_STOP;
}
#endif
static void le_connected(struct bt_conn *conn, uint8_t err)
{
struct gap_device_connected_ev ev;
struct bt_conn_info info;
if (err) {
return;
}
bt_conn_get_info(conn, &info);
memcpy(ev.address, info.le.dst->a.val, sizeof(ev.address));
ev.address_type = info.le.dst->type;
ev.interval = sys_cpu_to_le16(info.le.interval);
ev.latency = sys_cpu_to_le16(info.le.latency);
ev.timeout = sys_cpu_to_le16(info.le.timeout);
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_DEVICE_CONNECTED,
CONTROLLER_INDEX, (uint8_t *) &ev, sizeof(ev));
}
static void le_disconnected(struct bt_conn *conn, uint8_t reason)
{
struct gap_device_disconnected_ev ev;
const bt_addr_le_t *addr = bt_conn_get_dst(conn);
memcpy(ev.address, addr->a.val, sizeof(ev.address));
ev.address_type = addr->type;
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_DEVICE_DISCONNECTED,
CONTROLLER_INDEX, (uint8_t *) &ev, sizeof(ev));
}
static void le_identity_resolved(struct bt_conn *conn, const bt_addr_le_t *rpa,
const bt_addr_le_t *identity)
{
struct gap_identity_resolved_ev ev;
ev.address_type = rpa->type;
memcpy(ev.address, rpa->a.val, sizeof(ev.address));
ev.identity_address_type = identity->type;
memcpy(ev.identity_address, identity->a.val,
sizeof(ev.identity_address));
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_IDENTITY_RESOLVED,
CONTROLLER_INDEX, (uint8_t *) &ev, sizeof(ev));
}
static void le_param_updated(struct bt_conn *conn, uint16_t interval,
uint16_t latency, uint16_t timeout)
{
struct gap_conn_param_update_ev ev;
const bt_addr_le_t *addr = bt_conn_get_dst(conn);
memcpy(ev.address, addr->a.val, sizeof(ev.address));
ev.address_type = addr->type;
ev.interval = sys_cpu_to_le16(interval);
ev.latency = sys_cpu_to_le16(latency);
ev.timeout = sys_cpu_to_le16(timeout);
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_CONN_PARAM_UPDATE,
CONTROLLER_INDEX, (uint8_t *) &ev, sizeof(ev));
}
static bool le_param_req(struct bt_conn *conn, struct bt_le_conn_param *param)
{
/* reject update if all parameters match reject pattern */
if ((param->interval_min == REJECT_INTERVAL_MIN) &&
(param->interval_max == REJECT_INTERVAL_MAX) &&
(param->latency == REJECT_LATENCY) &&
(param->timeout == REJECT_SUPERVISION_TIMEOUT)) {
return false;
}
return true;
}
static void le_security_changed(struct bt_conn *conn, bt_security_t level,
enum bt_security_err err)
{
const bt_addr_le_t *addr = bt_conn_get_dst(conn);
struct gap_sec_level_changed_ev sec_ev;
struct gap_bond_lost_ev bond_ev;
struct bt_conn_info info;
switch (err) {
case BT_SECURITY_ERR_SUCCESS:
memcpy(sec_ev.address, addr->a.val, sizeof(sec_ev.address));
sec_ev.address_type = addr->type;
/* enum matches BTP values */
sec_ev.sec_level = level;
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_SEC_LEVEL_CHANGED,
CONTROLLER_INDEX, (uint8_t *) &sec_ev, sizeof(sec_ev));
break;
case BT_SECURITY_ERR_PIN_OR_KEY_MISSING:
/* for central role this means that peer have no LTK when we
* started encryption procedure
*
* This means bond is lost and we restart pairing to re-bond
*/
if (bt_conn_get_info(conn, &info) == 0 &&
info.role == BT_CONN_ROLE_CENTRAL) {
LOG_DBG("Bond lost");
(void)memcpy(bond_ev.address, addr->a.val, sizeof(bond_ev.address));
bond_ev.address_type = addr->type;
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_BOND_LOST,
CONTROLLER_INDEX, (uint8_t *)&bond_ev, sizeof(bond_ev));
(void)bt_conn_set_security(conn, BT_SECURITY_L2 | BT_SECURITY_FORCE_PAIR);
}
break;
default:
break;
}
}
static struct bt_conn_cb conn_callbacks = {
.connected = le_connected,
.disconnected = le_disconnected,
.identity_resolved = le_identity_resolved,
.le_param_updated = le_param_updated,
.le_param_req = le_param_req,
.security_changed = le_security_changed,
};
static void supported_commands(uint8_t *data, uint16_t len)
{
uint8_t cmds[4];
struct gap_read_supported_commands_rp *rp = (void *) &cmds;
(void)memset(cmds, 0, sizeof(cmds));
tester_set_bit(cmds, GAP_READ_SUPPORTED_COMMANDS);
tester_set_bit(cmds, GAP_READ_CONTROLLER_INDEX_LIST);
tester_set_bit(cmds, GAP_READ_CONTROLLER_INFO);
tester_set_bit(cmds, GAP_SET_CONNECTABLE);
tester_set_bit(cmds, GAP_SET_DISCOVERABLE);
tester_set_bit(cmds, GAP_SET_BONDABLE);
tester_set_bit(cmds, GAP_START_ADVERTISING);
tester_set_bit(cmds, GAP_START_DIRECTED_ADV);
tester_set_bit(cmds, GAP_STOP_ADVERTISING);
tester_set_bit(cmds, GAP_START_DISCOVERY);
tester_set_bit(cmds, GAP_STOP_DISCOVERY);
tester_set_bit(cmds, GAP_CONNECT);
tester_set_bit(cmds, GAP_DISCONNECT);
tester_set_bit(cmds, GAP_SET_IO_CAP);
tester_set_bit(cmds, GAP_PAIR);
tester_set_bit(cmds, GAP_PASSKEY_ENTRY);
tester_set_bit(cmds, GAP_PASSKEY_CONFIRM);
tester_set_bit(cmds, GAP_CONN_PARAM_UPDATE);
tester_set_bit(cmds, GAP_SET_MITM);
tester_set_bit(cmds, GAP_OOB_LEGACY_SET_DATA);
#if !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY)
tester_set_bit(cmds, GAP_OOB_SC_GET_LOCAL_DATA);
tester_set_bit(cmds, GAP_OOB_SC_SET_REMOTE_DATA);
#endif /* !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY) */
tester_set_bit(cmds, GAP_SET_FILTER_LIST);
tester_send(BTP_SERVICE_ID_GAP, GAP_READ_SUPPORTED_COMMANDS,
CONTROLLER_INDEX, (uint8_t *) rp, sizeof(cmds));
}
static void controller_index_list(uint8_t *data, uint16_t len)
{
struct gap_read_controller_index_list_rp *rp;
uint8_t buf[sizeof(*rp) + 1];
rp = (void *) buf;
rp->num = 1U;
rp->index[0] = CONTROLLER_INDEX;
tester_send(BTP_SERVICE_ID_GAP, GAP_READ_CONTROLLER_INDEX_LIST,
BTP_INDEX_NONE, (uint8_t *) rp, sizeof(buf));
}
static void controller_info(uint8_t *data, uint16_t len)
{
struct gap_read_controller_info_rp rp;
uint32_t supported_settings;
(void)memset(&rp, 0, sizeof(rp));
struct bt_le_oob oob_local = { 0 };
bt_le_oob_get_local(BT_ID_DEFAULT, &oob_local);
memcpy(rp.address, &oob_local.addr.a, sizeof(bt_addr_t));
/*
* Re-use the oob data read here in get_oob_sc_local_data()
*/
#if !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY)
oob_sc_local = oob_local;
#endif /* !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY) */
/*
* If privacy is used, the device uses random type address, otherwise
* static random or public type address is used.
*/
#if !defined(CONFIG_BT_PRIVACY)
if (oob_local.addr.type == BT_ADDR_LE_RANDOM) {
atomic_set_bit(&current_settings, GAP_SETTINGS_STATIC_ADDRESS);
}
#endif /* CONFIG_BT_PRIVACY */
supported_settings = BIT(GAP_SETTINGS_POWERED);
supported_settings |= BIT(GAP_SETTINGS_CONNECTABLE);
supported_settings |= BIT(GAP_SETTINGS_BONDABLE);
supported_settings |= BIT(GAP_SETTINGS_LE);
supported_settings |= BIT(GAP_SETTINGS_ADVERTISING);
rp.supported_settings = sys_cpu_to_le32(supported_settings);
rp.current_settings = sys_cpu_to_le32(current_settings);
memcpy(rp.name, CONTROLLER_NAME, sizeof(CONTROLLER_NAME));
tester_send(BTP_SERVICE_ID_GAP, GAP_READ_CONTROLLER_INFO,
CONTROLLER_INDEX, (uint8_t *) &rp, sizeof(rp));
}
#if !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY)
static const char *oob_config_str(int oob_config)
{
switch (oob_config) {
case BT_CONN_OOB_LOCAL_ONLY:
return "Local";
case BT_CONN_OOB_REMOTE_ONLY:
return "Remote";
case BT_CONN_OOB_BOTH_PEERS:
return "Local and Remote";
case BT_CONN_OOB_NO_DATA:
default:
return "no";
}
}
#endif /* !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY) */
static void oob_data_request(struct bt_conn *conn,
struct bt_conn_oob_info *oob_info)
{
struct bt_conn_info info;
int err = bt_conn_get_info(conn, &info);
if (err) {
return;
}
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(info.le.dst, addr, sizeof(addr));
switch (oob_info->type) {
#if !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY)
case BT_CONN_OOB_LE_SC:
{
LOG_DBG("Set %s OOB SC data for %s, ",
oob_config_str(oob_info->lesc.oob_config),
addr);
struct bt_le_oob_sc_data *oobd_local =
oob_info->lesc.oob_config != BT_CONN_OOB_REMOTE_ONLY ?
&oob_sc_local.le_sc_data :
NULL;
struct bt_le_oob_sc_data *oobd_remote =
oob_info->lesc.oob_config != BT_CONN_OOB_LOCAL_ONLY ?
&oob_sc_remote.le_sc_data :
NULL;
if (oobd_remote) {
/* Assume that oob_sc_remote
* corresponds to the currently connected peer
*/
bt_addr_le_copy(&oob_sc_remote.addr, info.le.remote);
}
if (oobd_local &&
bt_addr_le_cmp(info.le.local, &oob_sc_local.addr)) {
bt_addr_le_to_str(info.le.local, addr, sizeof(addr));
LOG_DBG("No OOB data available for local %s",
addr);
bt_conn_auth_cancel(conn);
return;
}
err = bt_le_oob_set_sc_data(conn, oobd_local, oobd_remote);
if (err) {
LOG_DBG("bt_le_oob_set_sc_data failed with: %d", err);
}
break;
}
#endif /* !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY) */
#if !defined(CONFIG_BT_SMP_SC_PAIR_ONLY)
case BT_CONN_OOB_LE_LEGACY:
LOG_DBG("Legacy OOB TK requested from remote %s", addr);
err = bt_le_oob_set_legacy_tk(conn, oob_legacy_tk);
if (err < 0) {
LOG_ERR("Failed to set OOB TK: %d", err);
}
break;
#endif /* !defined(CONFIG_BT_SMP_SC_PAIR_ONLY) */
default:
LOG_ERR("Unhandled OOB type %d", oob_info->type);
break;
}
}
#if !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY)
static void get_oob_sc_local_data(void)
{
cb.oob_data_request = oob_data_request;
struct gap_oob_sc_get_local_data_rp rp = { 0 };
memcpy(&rp.conf[0], &oob_sc_local.le_sc_data.c[0], sizeof(rp.conf));
memcpy(&rp.rand[0], &oob_sc_local.le_sc_data.r[0], sizeof(rp.rand));
tester_send(BTP_SERVICE_ID_GAP, GAP_OOB_SC_GET_LOCAL_DATA,
CONTROLLER_INDEX, (uint8_t *)&rp, sizeof(rp));
}
static void set_oob_sc_remote_data(const uint8_t *data, uint16_t len)
{
cb.oob_data_request = oob_data_request;
bt_set_oob_data_flag(true);
const struct gap_oob_sc_set_remote_data_cmd *cmd = (void *)data;
/* Note that the .addr field
* will be set by the oob_data_request callback
*/
memcpy(&oob_sc_remote.le_sc_data.r[0], &cmd->rand[0],
sizeof(oob_sc_remote.le_sc_data.r));
memcpy(&oob_sc_remote.le_sc_data.c[0], &cmd->conf[0],
sizeof(oob_sc_remote.le_sc_data.c));
tester_rsp(BTP_SERVICE_ID_GAP, GAP_OOB_SC_SET_REMOTE_DATA,
CONTROLLER_INDEX, BTP_STATUS_SUCCESS);
}
#endif /* !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY) */
static void set_connectable(uint8_t *data, uint16_t len)
{
const struct gap_set_connectable_cmd *cmd = (void *) data;
struct gap_set_connectable_rp rp;
if (cmd->connectable) {
atomic_set_bit(&current_settings, GAP_SETTINGS_CONNECTABLE);
} else {
atomic_clear_bit(&current_settings, GAP_SETTINGS_CONNECTABLE);
}
rp.current_settings = sys_cpu_to_le32(current_settings);
tester_send(BTP_SERVICE_ID_GAP, GAP_SET_CONNECTABLE, CONTROLLER_INDEX,
(uint8_t *) &rp, sizeof(rp));
}
static uint8_t ad_flags = BT_LE_AD_NO_BREDR;
static struct bt_data ad[10] = {
BT_DATA(BT_DATA_FLAGS, &ad_flags, sizeof(ad_flags)),
};
static struct bt_data sd[10];
static void set_discoverable(uint8_t *data, uint16_t len)
{
const struct gap_set_discoverable_cmd *cmd = (void *) data;
struct gap_set_discoverable_rp rp;
switch (cmd->discoverable) {
case GAP_NON_DISCOVERABLE:
ad_flags &= ~(BT_LE_AD_GENERAL | BT_LE_AD_LIMITED);
atomic_clear_bit(&current_settings, GAP_SETTINGS_DISCOVERABLE);
break;
case GAP_GENERAL_DISCOVERABLE:
ad_flags &= ~BT_LE_AD_LIMITED;
ad_flags |= BT_LE_AD_GENERAL;
atomic_set_bit(&current_settings, GAP_SETTINGS_DISCOVERABLE);
break;
case GAP_LIMITED_DISCOVERABLE:
ad_flags &= ~BT_LE_AD_GENERAL;
ad_flags |= BT_LE_AD_LIMITED;
atomic_set_bit(&current_settings, GAP_SETTINGS_DISCOVERABLE);
break;
default:
LOG_WRN("unknown mode: 0x%x", cmd->discoverable);
tester_rsp(BTP_SERVICE_ID_GAP, GAP_SET_DISCOVERABLE,
CONTROLLER_INDEX, BTP_STATUS_FAILED);
return;
}
rp.current_settings = sys_cpu_to_le32(current_settings);
tester_send(BTP_SERVICE_ID_GAP, GAP_SET_DISCOVERABLE, CONTROLLER_INDEX,
(uint8_t *) &rp, sizeof(rp));
}
static void set_bondable(uint8_t *data, uint16_t len)
{
const struct gap_set_bondable_cmd *cmd = (void *) data;
struct gap_set_bondable_rp rp;
LOG_DBG("cmd->bondable: %d", cmd->bondable);
if (cmd->bondable) {
atomic_set_bit(&current_settings, GAP_SETTINGS_BONDABLE);
} else {
atomic_clear_bit(&current_settings, GAP_SETTINGS_BONDABLE);
}
bt_set_bondable(cmd->bondable);
rp.current_settings = sys_cpu_to_le32(current_settings);
tester_send(BTP_SERVICE_ID_GAP, GAP_SET_BONDABLE, CONTROLLER_INDEX,
(uint8_t *) &rp, sizeof(rp));
}
static void start_advertising(const uint8_t *data, uint16_t len)
{
const struct gap_start_advertising_cmd *cmd = (void *) data;
struct gap_start_advertising_rp rp;
uint8_t adv_len, sd_len;
bool adv_conn;
int i;
for (i = 0, adv_len = 1U; i < cmd->adv_data_len; adv_len++) {
if (adv_len >= ARRAY_SIZE(ad)) {
LOG_ERR("ad[] Out of memory");
goto fail;
}
ad[adv_len].type = cmd->adv_sr_data[i++];
ad[adv_len].data_len = cmd->adv_sr_data[i++];
ad[adv_len].data = &cmd->adv_sr_data[i];
i += ad[adv_len].data_len;
}
for (sd_len = 0U; i < cmd->adv_data_len+cmd->scan_rsp_len; sd_len++) {
if (sd_len >= ARRAY_SIZE(sd)) {
LOG_ERR("sd[] Out of memory");
goto fail;
}
sd[sd_len].type = cmd->adv_sr_data[i++];
sd[sd_len].data_len = cmd->adv_sr_data[i++];
sd[sd_len].data = &cmd->adv_sr_data[i];
i += sd[sd_len].data_len;
}
adv_conn = atomic_test_bit(&current_settings, GAP_SETTINGS_CONNECTABLE);
/* BTP API don't allow to set empty scan response data. */
if (bt_le_adv_start(adv_conn ? BT_LE_ADV_CONN : BT_LE_ADV_NCONN,
ad, adv_len, sd_len ? sd : NULL, sd_len) < 0) {
LOG_ERR("Failed to start advertising");
goto fail;
}
atomic_set_bit(&current_settings, GAP_SETTINGS_ADVERTISING);
rp.current_settings = sys_cpu_to_le32(current_settings);
tester_send(BTP_SERVICE_ID_GAP, GAP_START_ADVERTISING, CONTROLLER_INDEX,
(uint8_t *) &rp, sizeof(rp));
return;
fail:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_START_ADVERTISING, CONTROLLER_INDEX,
BTP_STATUS_FAILED);
}
static void start_directed_advertising(const uint8_t *data, uint16_t len)
{
const struct gap_start_directed_adv_cmd *cmd = (void *)data;
struct gap_start_directed_adv_rp rp;
struct bt_le_adv_param adv_param;
uint16_t options = sys_le16_to_cpu(cmd->options);
const bt_addr_le_t *peer = (bt_addr_le_t *)data;
adv_param = *BT_LE_ADV_CONN_DIR(peer);
if (!(options & GAP_START_DIRECTED_ADV_HD)) {
adv_param.options |= BT_LE_ADV_OPT_DIR_MODE_LOW_DUTY;
adv_param.interval_max = BT_GAP_ADV_FAST_INT_MAX_2;
adv_param.interval_min = BT_GAP_ADV_FAST_INT_MIN_2;
}
if (options & GAP_START_DIRECTED_ADV_PEER_RPA) {
#if defined(CONFIG_BT_PRIVACY)
/* check if peer supports Central Address Resolution */
for (int i = 0; i < CONFIG_BT_MAX_PAIRED; i++) {
if (bt_addr_le_cmp(peer, &cars[i].addr) == 0) {
if (cars[i].supported) {
adv_param.options |= BT_LE_ADV_OPT_DIR_ADDR_RPA;
}
}
}
#endif
}
if (bt_le_adv_start(&adv_param, NULL, 0, NULL, 0) < 0) {
LOG_ERR("Failed to start advertising");
goto fail;
}
atomic_set_bit(&current_settings, GAP_SETTINGS_ADVERTISING);
rp.current_settings = sys_cpu_to_le32(current_settings);
tester_send(BTP_SERVICE_ID_GAP, GAP_START_DIRECTED_ADV,
CONTROLLER_INDEX, (uint8_t *)&rp, sizeof(rp));
return;
fail:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_START_DIRECTED_ADV, CONTROLLER_INDEX,
BTP_STATUS_FAILED);
}
static void stop_advertising(const uint8_t *data, uint16_t len)
{
struct gap_stop_advertising_rp rp;
int err;
err = bt_le_adv_stop();
if (err < 0) {
tester_rsp(BTP_SERVICE_ID_GAP, GAP_STOP_ADVERTISING,
CONTROLLER_INDEX, BTP_STATUS_FAILED);
LOG_ERR("Failed to stop advertising: %d", err);
return;
}
atomic_clear_bit(&current_settings, GAP_SETTINGS_ADVERTISING);
rp.current_settings = sys_cpu_to_le32(current_settings);
tester_send(BTP_SERVICE_ID_GAP, GAP_STOP_ADVERTISING, CONTROLLER_INDEX,
(uint8_t *) &rp, sizeof(rp));
}
static uint8_t get_ad_flags(struct net_buf_simple *ad)
{
uint8_t len, i;
/* Parse advertisement to get flags */
for (i = 0U; i < ad->len; i += len - 1) {
len = ad->data[i++];
if (!len) {
break;
}
/* Check if field length is correct */
if (len > (ad->len - i) || (ad->len - i) < 1) {
break;
}
switch (ad->data[i++]) {
case BT_DATA_FLAGS:
return ad->data[i];
default:
break;
}
}
return 0;
}
static uint8_t discovery_flags;
static struct net_buf_simple *adv_buf = NET_BUF_SIMPLE(ADV_BUF_LEN);
static void store_adv(const bt_addr_le_t *addr, int8_t rssi,
struct net_buf_simple *ad)
{
struct gap_device_found_ev *ev;
/* cleanup */
net_buf_simple_init(adv_buf, 0);
ev = net_buf_simple_add(adv_buf, sizeof(*ev));
memcpy(ev->address, addr->a.val, sizeof(ev->address));
ev->address_type = addr->type;
ev->rssi = rssi;
ev->flags = GAP_DEVICE_FOUND_FLAG_AD | GAP_DEVICE_FOUND_FLAG_RSSI;
ev->eir_data_len = ad->len;
memcpy(net_buf_simple_add(adv_buf, ad->len), ad->data, ad->len);
}
static void device_found(const bt_addr_le_t *addr, int8_t rssi, uint8_t evtype,
struct net_buf_simple *ad)
{
/* if General/Limited Discovery - parse Advertising data to get flags */
if (!(discovery_flags & GAP_DISCOVERY_FLAG_LE_OBSERVE) &&
(evtype != BT_GAP_ADV_TYPE_SCAN_RSP)) {
uint8_t flags = get_ad_flags(ad);
/* ignore non-discoverable devices */
if (!(flags & BT_LE_AD_DISCOV_MASK)) {
LOG_DBG("Non discoverable, skipping");
return;
}
/* if Limited Discovery - ignore general discoverable devices */
if ((discovery_flags & GAP_DISCOVERY_FLAG_LIMITED) &&
!(flags & BT_LE_AD_LIMITED)) {
LOG_DBG("General discoverable, skipping");
return;
}
}
/* attach Scan Response data */
if (evtype == BT_GAP_ADV_TYPE_SCAN_RSP) {
struct gap_device_found_ev *ev;
bt_addr_le_t a;
/* skip if there is no pending advertisement */
if (!adv_buf->len) {
LOG_INF("No pending advertisement, skipping");
return;
}
ev = (void *) adv_buf->data;
a.type = ev->address_type;
memcpy(a.a.val, ev->address, sizeof(a.a.val));
/*
* in general, the Scan Response comes right after the
* Advertisement, but if not if send stored event and ignore
* this one
*/
if (bt_addr_le_cmp(addr, &a)) {
LOG_INF("Address does not match, skipping");
goto done;
}
ev->eir_data_len += ad->len;
ev->flags |= GAP_DEVICE_FOUND_FLAG_SD;
memcpy(net_buf_simple_add(adv_buf, ad->len), ad->data, ad->len);
goto done;
}
/*
* if there is another pending advertisement, send it and store the
* current one
*/
if (adv_buf->len) {
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_DEVICE_FOUND,
CONTROLLER_INDEX, adv_buf->data, adv_buf->len);
net_buf_simple_reset(adv_buf);
}
store_adv(addr, rssi, ad);
/* if Active Scan and scannable event - wait for Scan Response */
if ((discovery_flags & GAP_DISCOVERY_FLAG_LE_ACTIVE_SCAN) &&
(evtype == BT_GAP_ADV_TYPE_ADV_IND ||
evtype == BT_GAP_ADV_TYPE_ADV_SCAN_IND)) {
LOG_DBG("Waiting for scan response");
return;
}
done:
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_DEVICE_FOUND,
CONTROLLER_INDEX, adv_buf->data, adv_buf->len);
net_buf_simple_reset(adv_buf);
}
static void start_discovery(const uint8_t *data, uint16_t len)
{
const struct gap_start_discovery_cmd *cmd = (void *) data;
uint8_t status;
/* only LE scan is supported */
if (cmd->flags & GAP_DISCOVERY_FLAG_BREDR) {
status = BTP_STATUS_FAILED;
LOG_WRN("BR/EDR not supported");
goto reply;
}
if (bt_le_scan_start(cmd->flags & GAP_DISCOVERY_FLAG_LE_ACTIVE_SCAN ?
BT_LE_SCAN_ACTIVE : BT_LE_SCAN_PASSIVE,
device_found) < 0) {
status = BTP_STATUS_FAILED;
LOG_ERR("Failed to start scanning");
goto reply;
}
net_buf_simple_init(adv_buf, 0);
discovery_flags = cmd->flags;
status = BTP_STATUS_SUCCESS;
reply:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_START_DISCOVERY, CONTROLLER_INDEX,
status);
}
static void stop_discovery(const uint8_t *data, uint16_t len)
{
uint8_t status = BTP_STATUS_SUCCESS;
int err;
err = bt_le_scan_stop();
if (err < 0) {
LOG_ERR("Failed to stop scanning: %d", err);
status = BTP_STATUS_FAILED;
}
tester_rsp(BTP_SERVICE_ID_GAP, GAP_STOP_DISCOVERY, CONTROLLER_INDEX,
status);
}
static void connect(const uint8_t *data, uint16_t len)
{
const bt_addr_le_t *addr = (const bt_addr_le_t *)data;
uint8_t status;
int err;
if (bt_addr_le_cmp(addr, BT_ADDR_LE_ANY) != 0) {
struct bt_conn *conn;
err = bt_conn_le_create(addr, BT_CONN_LE_CREATE_CONN,
BT_LE_CONN_PARAM_DEFAULT, &conn);
if (err) {
LOG_ERR("Failed to create connection (%d)", err);
status = BTP_STATUS_FAILED;
goto rsp;
}
bt_conn_unref(conn);
} else {
err = bt_conn_le_create_auto(BT_CONN_LE_CREATE_CONN,
BT_LE_CONN_PARAM_DEFAULT);
if (err) {
LOG_ERR("Failed to create auto connection (%d)", err);
status = BTP_STATUS_FAILED;
goto rsp;
}
}
status = BTP_STATUS_SUCCESS;
rsp:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_CONNECT, CONTROLLER_INDEX, status);
}
static void disconnect(const uint8_t *data, uint16_t len)
{
struct bt_conn *conn;
uint8_t status;
conn = bt_conn_lookup_addr_le(BT_ID_DEFAULT, (bt_addr_le_t *)data);
if (!conn) {
status = BTP_STATUS_FAILED;
LOG_ERR("Unknown connection");
goto rsp;
}
if (bt_conn_disconnect(conn, BT_HCI_ERR_REMOTE_USER_TERM_CONN)) {
LOG_ERR("Failed to disconnect");
status = BTP_STATUS_FAILED;
} else {
status = BTP_STATUS_SUCCESS;
}
bt_conn_unref(conn);
rsp:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_DISCONNECT, CONTROLLER_INDEX,
status);
}
static void auth_passkey_display(struct bt_conn *conn, unsigned int passkey)
{
struct gap_passkey_display_ev ev;
const bt_addr_le_t *addr = bt_conn_get_dst(conn);
memcpy(ev.address, addr->a.val, sizeof(ev.address));
ev.address_type = addr->type;
ev.passkey = sys_cpu_to_le32(passkey);
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_PASSKEY_DISPLAY,
CONTROLLER_INDEX, (uint8_t *) &ev, sizeof(ev));
}
static void auth_passkey_entry(struct bt_conn *conn)
{
struct gap_passkey_entry_req_ev ev;
const bt_addr_le_t *addr = bt_conn_get_dst(conn);
memcpy(ev.address, addr->a.val, sizeof(ev.address));
ev.address_type = addr->type;
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_PASSKEY_ENTRY_REQ,
CONTROLLER_INDEX, (uint8_t *) &ev, sizeof(ev));
}
static void auth_passkey_confirm(struct bt_conn *conn, unsigned int passkey)
{
struct gap_passkey_confirm_req_ev ev;
const bt_addr_le_t *addr = bt_conn_get_dst(conn);
memcpy(ev.address, addr->a.val, sizeof(ev.address));
ev.address_type = addr->type;
ev.passkey = sys_cpu_to_le32(passkey);
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_PASSKEY_CONFIRM_REQ,
CONTROLLER_INDEX, (uint8_t *) &ev, sizeof(ev));
}
static void auth_cancel(struct bt_conn *conn)
{
/* TODO */
}
enum bt_security_err auth_pairing_accept(struct bt_conn *conn,
const struct bt_conn_pairing_feat *const feat)
{
struct gap_bond_lost_ev ev;
const bt_addr_le_t *addr = bt_conn_get_dst(conn);
if (!bt_addr_le_is_bonded(BT_ID_DEFAULT, addr)) {
return BT_SECURITY_ERR_SUCCESS;
}
/* If a peer is already bonded and tries to pair again then it means that
* the it has lost its bond information.
*/
LOG_DBG("Bond lost");
memcpy(ev.address, addr->a.val, sizeof(ev.address));
ev.address_type = addr->type;
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_BOND_LOST, CONTROLLER_INDEX, (uint8_t *)&ev,
sizeof(ev));
return BT_SECURITY_ERR_SUCCESS;
}
void auth_pairing_failed(struct bt_conn *conn, enum bt_security_err reason)
{
struct gap_bond_pairing_failed_ev ev;
const bt_addr_le_t *addr = bt_conn_get_dst(conn);
memcpy(ev.address, addr->a.val, sizeof(ev.address));
ev.address_type = addr->type;
ev.reason = reason;
tester_send(BTP_SERVICE_ID_GAP, GAP_EV_PAIRING_FAILED, CONTROLLER_INDEX,
(uint8_t *)&ev, sizeof(ev));
}
static void auth_pairing_complete(struct bt_conn *conn, bool bonded)
{
#if defined(CONFIG_BT_PRIVACY)
/* Read peer's Central Address Resolution if bonded */
if (bonded) {
bt_gatt_read(conn, &read_car_params);
}
#endif
}
static struct bt_conn_auth_info_cb auth_info_cb = {
.pairing_failed = auth_pairing_failed,
.pairing_complete = auth_pairing_complete,
};
static void set_io_cap(const uint8_t *data, uint16_t len)
{
const struct gap_set_io_cap_cmd *cmd = (void *) data;
uint8_t status;
/* Reset io cap requirements */
(void)memset(&cb, 0, sizeof(cb));
bt_conn_auth_cb_register(NULL);
LOG_DBG("io_cap: %d", cmd->io_cap);
switch (cmd->io_cap) {
case GAP_IO_CAP_DISPLAY_ONLY:
cb.cancel = auth_cancel;
cb.passkey_display = auth_passkey_display;
break;
case GAP_IO_CAP_KEYBOARD_DISPLAY:
cb.cancel = auth_cancel;
cb.passkey_display = auth_passkey_display;
cb.passkey_entry = auth_passkey_entry;
cb.passkey_confirm = auth_passkey_confirm;
break;
case GAP_IO_CAP_NO_INPUT_OUTPUT:
cb.cancel = auth_cancel;
break;
case GAP_IO_CAP_KEYBOARD_ONLY:
cb.cancel = auth_cancel;
cb.passkey_entry = auth_passkey_entry;
break;
case GAP_IO_CAP_DISPLAY_YESNO:
cb.cancel = auth_cancel;
cb.passkey_display = auth_passkey_display;
cb.passkey_confirm = auth_passkey_confirm;
break;
default:
LOG_WRN("Unhandled io_cap: 0x%x", cmd->io_cap);
status = BTP_STATUS_FAILED;
goto rsp;
}
cb.pairing_accept = auth_pairing_accept;
if (bt_conn_auth_cb_register(&cb)) {
status = BTP_STATUS_FAILED;
goto rsp;
}
status = BTP_STATUS_SUCCESS;
rsp:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_SET_IO_CAP, CONTROLLER_INDEX,
status);
}
static void pair(const uint8_t *data, uint16_t len)
{
struct bt_conn *conn;
uint8_t status;
int err;
conn = bt_conn_lookup_addr_le(BT_ID_DEFAULT, (bt_addr_le_t *)data);
if (!conn) {
LOG_ERR("Unknown connection");
status = BTP_STATUS_FAILED;
goto rsp;
}
err = bt_conn_set_security(conn, BT_SECURITY_L2);
if (err < 0) {
LOG_ERR("Failed to set security: %d", err);
status = BTP_STATUS_FAILED;
bt_conn_unref(conn);
goto rsp;
}
bt_conn_unref(conn);
status = BTP_STATUS_SUCCESS;
rsp:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_PAIR, CONTROLLER_INDEX, status);
}
static void unpair(const uint8_t *data, uint16_t len)
{
struct gap_unpair_cmd *cmd = (void *) data;
struct bt_conn *conn;
bt_addr_le_t addr;
uint8_t status;
int err;
addr.type = cmd->address_type;
memcpy(addr.a.val, cmd->address, sizeof(addr.a.val));
conn = bt_conn_lookup_addr_le(BT_ID_DEFAULT, &addr);
if (!conn) {
LOG_ERR("Unknown connection");
goto keys;
}
err = bt_conn_disconnect(conn, BT_HCI_ERR_REMOTE_USER_TERM_CONN);
bt_conn_unref(conn);
if (err < 0) {
LOG_ERR("Failed to disconnect: %d", err);
status = BTP_STATUS_FAILED;
goto rsp;
}
keys:
err = bt_unpair(BT_ID_DEFAULT, &addr);
status = err < 0 ? BTP_STATUS_FAILED : BTP_STATUS_SUCCESS;
rsp:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_UNPAIR, CONTROLLER_INDEX, status);
}
static void passkey_entry(const uint8_t *data, uint16_t len)
{
const struct gap_passkey_entry_cmd *cmd = (void *) data;
struct bt_conn *conn;
uint8_t status;
int err;
conn = bt_conn_lookup_addr_le(BT_ID_DEFAULT, (bt_addr_le_t *)data);
if (!conn) {
LOG_ERR("Unknown connection");
status = BTP_STATUS_FAILED;
goto rsp;
}
err = bt_conn_auth_passkey_entry(conn, sys_le32_to_cpu(cmd->passkey));
if (err < 0) {
LOG_ERR("Failed to enter passkey: %d", err);
}
bt_conn_unref(conn);
status = err < 0 ? BTP_STATUS_FAILED : BTP_STATUS_SUCCESS;
rsp:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_PASSKEY_ENTRY, CONTROLLER_INDEX,
status);
}
static void passkey_confirm(const uint8_t *data, uint16_t len)
{
const struct gap_passkey_confirm_cmd *cmd = (void *) data;
struct bt_conn *conn;
uint8_t status;
int err;
conn = bt_conn_lookup_addr_le(BT_ID_DEFAULT, (bt_addr_le_t *)data);
if (!conn) {
LOG_ERR("Unknown connection");
status = BTP_STATUS_FAILED;
goto rsp;
}
if (cmd->match) {
err = bt_conn_auth_passkey_confirm(conn);
if (err < 0) {
LOG_ERR("Failed to confirm passkey: %d", err);
}
} else {
err = bt_conn_auth_cancel(conn);
if (err < 0) {
LOG_ERR("Failed to cancel auth: %d", err);
}
}
bt_conn_unref(conn);
status = err < 0 ? BTP_STATUS_FAILED : BTP_STATUS_SUCCESS;
rsp:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_PASSKEY_CONFIRM, CONTROLLER_INDEX,
status);
}
static void conn_param_update(const uint8_t *data, uint16_t len)
{
const struct gap_conn_param_update_cmd *cmd = (void *) data;
struct bt_le_conn_param param = {
.interval_min = sys_le16_to_cpu(cmd->interval_min),
.interval_max = sys_le16_to_cpu(cmd->interval_max),
.latency = sys_le16_to_cpu(cmd->latency),
.timeout = sys_le16_to_cpu(cmd->timeout),
};
struct bt_conn *conn;
uint8_t status = BTP_STATUS_FAILED;
int err;
conn = bt_conn_lookup_addr_le(BT_ID_DEFAULT, (bt_addr_le_t *)data);
if (!conn) {
LOG_ERR("Unknown connection");
goto rsp;
}
err = bt_conn_le_param_update(conn, &param);
if (err < 0) {
LOG_ERR("Failed to update params: %d", err);
}
bt_conn_unref(conn);
status = err < 0 ? BTP_STATUS_FAILED : BTP_STATUS_SUCCESS;
rsp:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_CONN_PARAM_UPDATE, CONTROLLER_INDEX,
status);
}
static void set_mitm(const uint8_t *data, uint16_t len)
{
LOG_WRN("Use CONFIG_BT_SMP_ENFORCE_MITM instead");
tester_rsp(BTP_SERVICE_ID_GAP, GAP_SET_MITM, CONTROLLER_INDEX,
BTP_STATUS_SUCCESS);
}
static void set_oob_legacy_data(const uint8_t *data, uint16_t len)
{
const struct gap_oob_legacy_set_data_cmd *cmd = (void *) data;
memcpy(oob_legacy_tk, cmd->oob_data, 16);
bt_set_oob_data_flag(true);
cb.oob_data_request = oob_data_request;
tester_rsp(BTP_SERVICE_ID_GAP, GAP_OOB_LEGACY_SET_DATA,
CONTROLLER_INDEX, BTP_STATUS_SUCCESS);
}
static void set_filter_list(const uint8_t *data, uint16_t len)
{
const struct gap_set_filter_list *cmd = (const void *) data;
uint8_t status;
int err;
if (len < sizeof(*cmd) ||
len != (sizeof(*cmd) + (cmd->cnt * sizeof(cmd->addr[0])))) {
status = BTP_STATUS_FAILED;
goto failed;
}
(void)bt_le_filter_accept_list_clear();
for (int i = 0; i < cmd->cnt; i++) {
err = bt_le_filter_accept_list_add(&cmd->addr[i]);
if (err < 0) {
status = BTP_STATUS_FAILED;
goto failed;
}
}
status = BTP_STATUS_SUCCESS;
failed:
tester_rsp(BTP_SERVICE_ID_GAP, GAP_SET_FILTER_LIST,
CONTROLLER_INDEX, status);
}
void tester_handle_gap(uint8_t opcode, uint8_t index, uint8_t *data,
uint16_t len)
{
LOG_DBG("opcode: 0x%02x", opcode);
switch (opcode) {
case GAP_READ_SUPPORTED_COMMANDS:
case GAP_READ_CONTROLLER_INDEX_LIST:
if (index != BTP_INDEX_NONE){
tester_rsp(BTP_SERVICE_ID_GAP, opcode, index,
BTP_STATUS_FAILED);
LOG_WRN("index != BTP_INDEX_NONE: opcode: 0x%x "
"index: 0x%x", opcode, index);
return;
}
break;
default:
if (index != CONTROLLER_INDEX){
tester_rsp(BTP_SERVICE_ID_GAP, opcode, index,
BTP_STATUS_FAILED);
LOG_WRN("index != CONTROLLER_INDEX: opcode: 0x%x "
"index: 0x%x", opcode, index);
return;
}
break;
}
switch (opcode) {
case GAP_READ_SUPPORTED_COMMANDS:
supported_commands(data, len);
return;
case GAP_READ_CONTROLLER_INDEX_LIST:
controller_index_list(data, len);
return;
case GAP_READ_CONTROLLER_INFO:
controller_info(data, len);
return;
case GAP_SET_CONNECTABLE:
set_connectable(data, len);
return;
case GAP_SET_DISCOVERABLE:
set_discoverable(data, len);
return;
case GAP_SET_BONDABLE:
set_bondable(data, len);
return;
case GAP_START_ADVERTISING:
start_advertising(data, len);
return;
case GAP_START_DIRECTED_ADV:
start_directed_advertising(data, len);
return;
case GAP_STOP_ADVERTISING:
stop_advertising(data, len);
return;
case GAP_START_DISCOVERY:
start_discovery(data, len);
return;
case GAP_STOP_DISCOVERY:
stop_discovery(data, len);
return;
case GAP_CONNECT:
connect(data, len);
return;
case GAP_DISCONNECT:
disconnect(data, len);
return;
case GAP_SET_IO_CAP:
set_io_cap(data, len);
return;
case GAP_PAIR:
pair(data, len);
return;
case GAP_UNPAIR:
unpair(data, len);
return;
case GAP_PASSKEY_ENTRY:
passkey_entry(data, len);
return;
case GAP_PASSKEY_CONFIRM:
passkey_confirm(data, len);
return;
case GAP_CONN_PARAM_UPDATE:
conn_param_update(data, len);
return;
case GAP_SET_MITM:
set_mitm(data, len);
return;
case GAP_OOB_LEGACY_SET_DATA:
set_oob_legacy_data(data, len);
return;
#if !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY)
case GAP_OOB_SC_GET_LOCAL_DATA:
get_oob_sc_local_data();
return;
case GAP_OOB_SC_SET_REMOTE_DATA:
set_oob_sc_remote_data(data, len);
return;
#endif /* !defined(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY) */
case GAP_SET_FILTER_LIST:
set_filter_list(data, len);
return;
default:
LOG_WRN("Unknown opcode: 0x%x", opcode);
tester_rsp(BTP_SERVICE_ID_GAP, opcode, index,
BTP_STATUS_UNKNOWN_CMD);
return;
}
}
static void tester_init_gap_cb(int err)
{
if (err) {
tester_rsp(BTP_SERVICE_ID_CORE, CORE_REGISTER_SERVICE,
BTP_INDEX_NONE, BTP_STATUS_FAILED);
LOG_WRN("Error: %d", err);
return;
}
atomic_clear(&current_settings);
atomic_set_bit(&current_settings, GAP_SETTINGS_POWERED);
atomic_set_bit(&current_settings, GAP_SETTINGS_CONNECTABLE);
atomic_set_bit(&current_settings, GAP_SETTINGS_BONDABLE);
atomic_set_bit(&current_settings, GAP_SETTINGS_LE);
#if defined(CONFIG_BT_PRIVACY)
atomic_set_bit(&current_settings, GAP_SETTINGS_PRIVACY);
#endif /* CONFIG_BT_PRIVACY */
bt_conn_cb_register(&conn_callbacks);
tester_rsp(BTP_SERVICE_ID_CORE, CORE_REGISTER_SERVICE, BTP_INDEX_NONE,
BTP_STATUS_SUCCESS);
}
uint8_t tester_init_gap(void)
{
int err;
(void)memset(&cb, 0, sizeof(cb));
bt_conn_auth_cb_register(NULL);
cb.pairing_accept = auth_pairing_accept;
if (bt_conn_auth_cb_register(&cb)) {
return BTP_STATUS_FAILED;
}
bt_conn_auth_info_cb_register(&auth_info_cb);
err = bt_enable(tester_init_gap_cb);
if (err < 0) {
LOG_ERR("Unable to enable Bluetooth: %d", err);
return BTP_STATUS_FAILED;
}
return BTP_STATUS_SUCCESS;
}
uint8_t tester_unregister_gap(void)
{
return BTP_STATUS_SUCCESS;
}