blob: 355377c2a79a31dcd2290c84301614ee99b95a5c [file] [log] [blame]
/*
* Copyright (c) 2016 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
*
* @brief Pipes
*/
#include <zephyr/kernel.h>
#include <zephyr/kernel_structs.h>
#include <zephyr/toolchain.h>
#include <ksched.h>
#include <wait_q.h>
#include <zephyr/init.h>
#include <zephyr/internal/syscall_handler.h>
#include <kernel_internal.h>
#include <zephyr/sys/check.h>
struct waitq_walk_data {
sys_dlist_t *list;
size_t bytes_requested;
size_t bytes_available;
};
static int pipe_get_internal(k_spinlock_key_t key, struct k_pipe *pipe,
void *data, size_t bytes_to_read,
size_t *bytes_read, size_t min_xfer,
k_timeout_t timeout);
#ifdef CONFIG_OBJ_CORE_PIPE
static struct k_obj_type obj_type_pipe;
#endif
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
{
pipe->buffer = buffer;
pipe->size = size;
pipe->bytes_used = 0U;
pipe->read_index = 0U;
pipe->write_index = 0U;
pipe->lock = (struct k_spinlock){};
z_waitq_init(&pipe->wait_q.writers);
z_waitq_init(&pipe->wait_q.readers);
SYS_PORT_TRACING_OBJ_INIT(k_pipe, pipe);
pipe->flags = 0;
#if defined(CONFIG_POLL)
sys_dlist_init(&pipe->poll_events);
#endif
k_object_init(pipe);
#ifdef CONFIG_OBJ_CORE_PIPE
k_obj_core_init_and_link(K_OBJ_CORE(pipe), &obj_type_pipe);
#endif
}
int z_impl_k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
{
void *buffer;
int ret;
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, alloc_init, pipe);
if (size != 0U) {
buffer = z_thread_malloc(size);
if (buffer != NULL) {
k_pipe_init(pipe, buffer, size);
pipe->flags = K_PIPE_FLAG_ALLOC;
ret = 0;
} else {
ret = -ENOMEM;
}
} else {
k_pipe_init(pipe, NULL, 0U);
ret = 0;
}
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, alloc_init, pipe, ret);
return ret;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
{
K_OOPS(K_SYSCALL_OBJ_NEVER_INIT(pipe, K_OBJ_PIPE));
return z_impl_k_pipe_alloc_init(pipe, size);
}
#include <syscalls/k_pipe_alloc_init_mrsh.c>
#endif
static inline void handle_poll_events(struct k_pipe *pipe)
{
#ifdef CONFIG_POLL
z_handle_obj_poll_events(&pipe->poll_events, K_POLL_STATE_PIPE_DATA_AVAILABLE);
#else
ARG_UNUSED(pipe);
#endif
}
void z_impl_k_pipe_flush(struct k_pipe *pipe)
{
size_t bytes_read;
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, flush, pipe);
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
(void) pipe_get_internal(key, pipe, NULL, (size_t) -1, &bytes_read, 0U,
K_NO_WAIT);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, flush, pipe);
}
#ifdef CONFIG_USERSPACE
void z_vrfy_k_pipe_flush(struct k_pipe *pipe)
{
K_OOPS(K_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
z_impl_k_pipe_flush(pipe);
}
#include <syscalls/k_pipe_flush_mrsh.c>
#endif
void z_impl_k_pipe_buffer_flush(struct k_pipe *pipe)
{
size_t bytes_read;
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, buffer_flush, pipe);
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
if (pipe->buffer != NULL) {
(void) pipe_get_internal(key, pipe, NULL, pipe->size,
&bytes_read, 0U, K_NO_WAIT);
} else {
k_spin_unlock(&pipe->lock, key);
}
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, buffer_flush, pipe);
}
#ifdef CONFIG_USERSPACE
void z_vrfy_k_pipe_buffer_flush(struct k_pipe *pipe)
{
K_OOPS(K_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
z_impl_k_pipe_buffer_flush(pipe);
}
#endif
int k_pipe_cleanup(struct k_pipe *pipe)
{
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, cleanup, pipe);
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
CHECKIF(z_waitq_head(&pipe->wait_q.readers) != NULL ||
z_waitq_head(&pipe->wait_q.writers) != NULL) {
k_spin_unlock(&pipe->lock, key);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, cleanup, pipe, -EAGAIN);
return -EAGAIN;
}
if ((pipe->flags & K_PIPE_FLAG_ALLOC) != 0U) {
k_free(pipe->buffer);
pipe->buffer = NULL;
/*
* Freeing the buffer changes the pipe into a bufferless
* pipe. Reset the pipe's counters to prevent malfunction.
*/
pipe->size = 0U;
pipe->bytes_used = 0U;
pipe->read_index = 0U;
pipe->write_index = 0U;
pipe->flags &= ~K_PIPE_FLAG_ALLOC;
}
k_spin_unlock(&pipe->lock, key);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, cleanup, pipe, 0U);
return 0;
}
/**
* @brief Copy bytes from @a src to @a dest
*
* @return Number of bytes copied
*/
static size_t pipe_xfer(unsigned char *dest, size_t dest_size,
const unsigned char *src, size_t src_size)
{
size_t num_bytes = MIN(dest_size, src_size);
if (dest == NULL) {
/* Data is being flushed. Pretend the data was copied. */
return num_bytes;
}
(void) memcpy(dest, src, num_bytes);
return num_bytes;
}
/**
* @brief Callback routine used to populate wait list
*
* @return 1 to stop further walking; 0 to continue walking
*/
static int pipe_walk_op(struct k_thread *thread, void *data)
{
struct waitq_walk_data *walk_data = data;
struct _pipe_desc *desc = (struct _pipe_desc *)thread->base.swap_data;
sys_dlist_append(walk_data->list, &desc->node);
walk_data->bytes_available += desc->bytes_to_xfer;
if (walk_data->bytes_available >= walk_data->bytes_requested) {
return 1;
}
return 0;
}
/**
* @brief Popluate pipe descriptors for copying to/from waiters' buffers
*
* This routine cycles through the waiters on the wait queue and creates
* a list of threads that will have data directly copied to / read from
* their buffers. This list helps us avoid double copying later.
*
* @return # of bytes available for direct copying
*/
static size_t pipe_waiter_list_populate(sys_dlist_t *list,
_wait_q_t *wait_q,
size_t bytes_to_xfer)
{
struct waitq_walk_data walk_data;
walk_data.list = list;
walk_data.bytes_requested = bytes_to_xfer;
walk_data.bytes_available = 0;
(void) z_sched_waitq_walk(wait_q, pipe_walk_op, &walk_data);
return walk_data.bytes_available;
}
/**
* @brief Populate pipe descriptors for copying to/from pipe buffer
*
* This routine is only called if the pipe buffer is not empty (when reading),
* or if not full (when writing).
*/
static size_t pipe_buffer_list_populate(sys_dlist_t *list,
struct _pipe_desc *desc,
unsigned char *buffer,
size_t size,
size_t start,
size_t end)
{
sys_dlist_append(list, &desc[0].node);
desc[0].thread = NULL;
desc[0].buffer = &buffer[start];
if (start < end) {
desc[0].bytes_to_xfer = end - start;
return end - start;
}
desc[0].bytes_to_xfer = size - start;
desc[1].thread = NULL;
desc[1].buffer = &buffer[0];
desc[1].bytes_to_xfer = end;
sys_dlist_append(list, &desc[1].node);
return size - start + end;
}
/**
* @brief Determine the correct return code
*
* Bytes Xferred No Wait Wait
* >= Minimum 0 0
* < Minimum -EIO* -EAGAIN
*
* * The "-EIO No Wait" case was already checked after the list of pipe
* descriptors was created.
*
* @return See table above
*/
static int pipe_return_code(size_t min_xfer, size_t bytes_remaining,
size_t bytes_requested)
{
if (bytes_requested - bytes_remaining >= min_xfer) {
/*
* At least the minimum number of requested
* bytes have been transferred.
*/
return 0;
}
return -EAGAIN;
}
/**
* @brief Copy data from source(s) to destination(s)
*/
static size_t pipe_write(struct k_pipe *pipe, sys_dlist_t *src_list,
sys_dlist_t *dest_list, bool *reschedule)
{
struct _pipe_desc *src;
struct _pipe_desc *dest;
size_t bytes_copied;
size_t num_bytes_written = 0U;
src = (struct _pipe_desc *)sys_dlist_get(src_list);
dest = (struct _pipe_desc *)sys_dlist_get(dest_list);
while ((src != NULL) && (dest != NULL)) {
bytes_copied = pipe_xfer(dest->buffer, dest->bytes_to_xfer,
src->buffer, src->bytes_to_xfer);
num_bytes_written += bytes_copied;
dest->buffer += bytes_copied;
dest->bytes_to_xfer -= bytes_copied;
src->buffer += bytes_copied;
src->bytes_to_xfer -= bytes_copied;
if (dest->thread == NULL) {
/* Writing to the pipe buffer. Update details. */
pipe->bytes_used += bytes_copied;
pipe->write_index += bytes_copied;
if (pipe->write_index >= pipe->size) {
pipe->write_index -= pipe->size;
}
} else if (dest->bytes_to_xfer == 0U) {
/* The thread's read request has been satisfied. */
z_unpend_thread(dest->thread);
z_ready_thread(dest->thread);
*reschedule = true;
}
if (src->bytes_to_xfer == 0U) {
src = (struct _pipe_desc *)sys_dlist_get(src_list);
}
if (dest->bytes_to_xfer == 0U) {
dest = (struct _pipe_desc *)sys_dlist_get(dest_list);
}
}
return num_bytes_written;
}
int z_impl_k_pipe_put(struct k_pipe *pipe, const void *data,
size_t bytes_to_write, size_t *bytes_written,
size_t min_xfer, k_timeout_t timeout)
{
struct _pipe_desc pipe_desc[2];
struct _pipe_desc isr_desc;
struct _pipe_desc *src_desc;
sys_dlist_t dest_list;
sys_dlist_t src_list;
size_t bytes_can_write;
bool reschedule_needed = false;
__ASSERT(((arch_is_in_isr() == false) ||
K_TIMEOUT_EQ(timeout, K_NO_WAIT)), "");
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, put, pipe, timeout);
CHECKIF((min_xfer > bytes_to_write) || bytes_written == NULL) {
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout,
-EINVAL);
return -EINVAL;
}
sys_dlist_init(&src_list);
sys_dlist_init(&dest_list);
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
/*
* First, write to any waiting readers, if any exist.
* Second, write to the pipe buffer, if it exists.
*/
bytes_can_write = pipe_waiter_list_populate(&dest_list,
&pipe->wait_q.readers,
bytes_to_write);
if (pipe->bytes_used != pipe->size) {
bytes_can_write += pipe_buffer_list_populate(&dest_list,
pipe_desc,
pipe->buffer,
pipe->size,
pipe->write_index,
pipe->read_index);
}
if ((bytes_can_write < min_xfer) &&
(K_TIMEOUT_EQ(timeout, K_NO_WAIT))) {
/* The request can not be fulfilled. */
k_spin_unlock(&pipe->lock, key);
*bytes_written = 0U;
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe,
timeout, -EIO);
return -EIO;
}
/*
* Do not use the pipe descriptor stored within k_thread if
* invoked from within an ISR as that is not safe to do.
*/
src_desc = k_is_in_isr() ? &isr_desc : &_current->pipe_desc;
src_desc->buffer = (unsigned char *)data;
src_desc->bytes_to_xfer = bytes_to_write;
src_desc->thread = _current;
sys_dlist_append(&src_list, &src_desc->node);
*bytes_written = pipe_write(pipe, &src_list,
&dest_list, &reschedule_needed);
/*
* Only handle poll events if the pipe has had some bytes written and
* there are bytes remaining after any pending readers have read from it
*/
if ((pipe->bytes_used != 0U) && (*bytes_written != 0U)) {
handle_poll_events(pipe);
}
/*
* The immediate success conditions below are backwards
* compatible with an earlier pipe implementation.
*/
if ((*bytes_written == bytes_to_write) ||
(K_TIMEOUT_EQ(timeout, K_NO_WAIT)) ||
((*bytes_written >= min_xfer) && (min_xfer > 0U))) {
/* The minimum amount of data has been copied */
if (reschedule_needed) {
z_reschedule(&pipe->lock, key);
} else {
k_spin_unlock(&pipe->lock, key);
}
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, 0);
return 0;
}
/* The minimum amount of data has not been copied. Block. */
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_pipe, put, pipe, timeout);
_current->base.swap_data = src_desc;
z_sched_wait(&pipe->lock, key, &pipe->wait_q.writers, timeout, NULL);
/*
* On SMP systems, threads in the processing list may timeout before
* the data has finished copying. The following spin lock/unlock pair
* prevents those threads from executing further until the data copying
* is complete.
*/
key = k_spin_lock(&pipe->lock);
k_spin_unlock(&pipe->lock, key);
*bytes_written = bytes_to_write - src_desc->bytes_to_xfer;
int ret = pipe_return_code(min_xfer, src_desc->bytes_to_xfer,
bytes_to_write);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, ret);
return ret;
}
#ifdef CONFIG_USERSPACE
int z_vrfy_k_pipe_put(struct k_pipe *pipe, const void *data,
size_t bytes_to_write, size_t *bytes_written,
size_t min_xfer, k_timeout_t timeout)
{
K_OOPS(K_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
K_OOPS(K_SYSCALL_MEMORY_WRITE(bytes_written, sizeof(*bytes_written)));
K_OOPS(K_SYSCALL_MEMORY_READ((void *)data, bytes_to_write));
return z_impl_k_pipe_put((struct k_pipe *)pipe, data,
bytes_to_write, bytes_written, min_xfer,
timeout);
}
#include <syscalls/k_pipe_put_mrsh.c>
#endif
static int pipe_get_internal(k_spinlock_key_t key, struct k_pipe *pipe,
void *data, size_t bytes_to_read,
size_t *bytes_read, size_t min_xfer,
k_timeout_t timeout)
{
sys_dlist_t src_list;
struct _pipe_desc pipe_desc[2];
struct _pipe_desc isr_desc;
struct _pipe_desc *dest_desc;
struct _pipe_desc *src_desc;
size_t num_bytes_read = 0U;
size_t bytes_copied;
size_t bytes_can_read = 0U;
bool reschedule_needed = false;
/*
* Data copying takes place in the following order.
* 1. Copy data from the pipe buffer to the receive buffer.
* 2. Copy data from the waiting writer(s) to the receive buffer.
* 3. Refill the pipe buffer from the waiting writer(s).
*/
sys_dlist_init(&src_list);
if (pipe->bytes_used != 0) {
bytes_can_read = pipe_buffer_list_populate(&src_list,
pipe_desc,
pipe->buffer,
pipe->size,
pipe->read_index,
pipe->write_index);
}
bytes_can_read += pipe_waiter_list_populate(&src_list,
&pipe->wait_q.writers,
bytes_to_read);
if ((bytes_can_read < min_xfer) &&
(K_TIMEOUT_EQ(timeout, K_NO_WAIT))) {
/* The request can not be fulfilled. */
k_spin_unlock(&pipe->lock, key);
*bytes_read = 0;
return -EIO;
}
/*
* Do not use the pipe descriptor stored within k_thread if
* invoked from within an ISR as that is not safe to do.
*/
dest_desc = k_is_in_isr() ? &isr_desc : &_current->pipe_desc;
dest_desc->buffer = data;
dest_desc->bytes_to_xfer = bytes_to_read;
dest_desc->thread = _current;
src_desc = (struct _pipe_desc *)sys_dlist_get(&src_list);
while (src_desc != NULL) {
bytes_copied = pipe_xfer(dest_desc->buffer,
dest_desc->bytes_to_xfer,
src_desc->buffer,
src_desc->bytes_to_xfer);
num_bytes_read += bytes_copied;
src_desc->buffer += bytes_copied;
src_desc->bytes_to_xfer -= bytes_copied;
if (dest_desc->buffer != NULL) {
dest_desc->buffer += bytes_copied;
}
dest_desc->bytes_to_xfer -= bytes_copied;
if (src_desc->thread == NULL) {
/* Reading from the pipe buffer. Update details. */
pipe->bytes_used -= bytes_copied;
pipe->read_index += bytes_copied;
if (pipe->read_index >= pipe->size) {
pipe->read_index -= pipe->size;
}
} else if (src_desc->bytes_to_xfer == 0U) {
/* The thread's write request has been satisfied. */
z_unpend_thread(src_desc->thread);
z_ready_thread(src_desc->thread);
reschedule_needed = true;
}
src_desc = (struct _pipe_desc *)sys_dlist_get(&src_list);
}
if (pipe->bytes_used != pipe->size) {
sys_dlist_t pipe_list;
/*
* The pipe is not full. If there are any waiting writers,
* refill the pipe.
*/
sys_dlist_init(&src_list);
sys_dlist_init(&pipe_list);
(void) pipe_waiter_list_populate(&src_list,
&pipe->wait_q.writers,
pipe->size - pipe->bytes_used);
(void) pipe_buffer_list_populate(&pipe_list, pipe_desc,
pipe->buffer, pipe->size,
pipe->write_index,
pipe->read_index);
(void) pipe_write(pipe, &src_list,
&pipe_list, &reschedule_needed);
}
/*
* The immediate success conditions below are backwards
* compatible with an earlier pipe implementation.
*/
if ((num_bytes_read == bytes_to_read) ||
(K_TIMEOUT_EQ(timeout, K_NO_WAIT)) ||
((num_bytes_read >= min_xfer) && (min_xfer > 0U))) {
/* The minimum amount of data has been copied */
*bytes_read = num_bytes_read;
if (reschedule_needed) {
z_reschedule(&pipe->lock, key);
} else {
k_spin_unlock(&pipe->lock, key);
}
return 0;
}
/* The minimum amount of data has not been copied. Block. */
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_pipe, get, pipe, timeout);
_current->base.swap_data = dest_desc;
z_sched_wait(&pipe->lock, key, &pipe->wait_q.readers, timeout, NULL);
/*
* On SMP systems, threads in the processing list may timeout before
* the data has finished copying. The following spin lock/unlock pair
* prevents those threads from executing further until the data copying
* is complete.
*/
key = k_spin_lock(&pipe->lock);
k_spin_unlock(&pipe->lock, key);
*bytes_read = bytes_to_read - dest_desc->bytes_to_xfer;
int ret = pipe_return_code(min_xfer, dest_desc->bytes_to_xfer,
bytes_to_read);
return ret;
}
int z_impl_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read,
size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
{
__ASSERT(((arch_is_in_isr() == false) ||
K_TIMEOUT_EQ(timeout, K_NO_WAIT)), "");
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, get, pipe, timeout);
CHECKIF((min_xfer > bytes_to_read) || bytes_read == NULL) {
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe,
timeout, -EINVAL);
return -EINVAL;
}
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
int ret = pipe_get_internal(key, pipe, data, bytes_to_read, bytes_read,
min_xfer, timeout);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe, timeout, ret);
return ret;
}
#ifdef CONFIG_USERSPACE
int z_vrfy_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read,
size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
{
K_OOPS(K_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
K_OOPS(K_SYSCALL_MEMORY_WRITE(bytes_read, sizeof(*bytes_read)));
K_OOPS(K_SYSCALL_MEMORY_WRITE((void *)data, bytes_to_read));
return z_impl_k_pipe_get((struct k_pipe *)pipe, (void *)data,
bytes_to_read, bytes_read, min_xfer,
timeout);
}
#include <syscalls/k_pipe_get_mrsh.c>
#endif
size_t z_impl_k_pipe_read_avail(struct k_pipe *pipe)
{
size_t res;
k_spinlock_key_t key;
/* Buffer and size are fixed. No need to spin. */
if (pipe->buffer == NULL || pipe->size == 0U) {
res = 0;
goto out;
}
key = k_spin_lock(&pipe->lock);
if (pipe->read_index == pipe->write_index) {
res = pipe->bytes_used;
} else if (pipe->read_index < pipe->write_index) {
res = pipe->write_index - pipe->read_index;
} else {
res = pipe->size - (pipe->read_index - pipe->write_index);
}
k_spin_unlock(&pipe->lock, key);
out:
return res;
}
#ifdef CONFIG_USERSPACE
size_t z_vrfy_k_pipe_read_avail(struct k_pipe *pipe)
{
K_OOPS(K_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
return z_impl_k_pipe_read_avail(pipe);
}
#include <syscalls/k_pipe_read_avail_mrsh.c>
#endif
size_t z_impl_k_pipe_write_avail(struct k_pipe *pipe)
{
size_t res;
k_spinlock_key_t key;
/* Buffer and size are fixed. No need to spin. */
if (pipe->buffer == NULL || pipe->size == 0U) {
res = 0;
goto out;
}
key = k_spin_lock(&pipe->lock);
if (pipe->write_index == pipe->read_index) {
res = pipe->size - pipe->bytes_used;
} else if (pipe->write_index < pipe->read_index) {
res = pipe->read_index - pipe->write_index;
} else {
res = pipe->size - (pipe->write_index - pipe->read_index);
}
k_spin_unlock(&pipe->lock, key);
out:
return res;
}
#ifdef CONFIG_USERSPACE
size_t z_vrfy_k_pipe_write_avail(struct k_pipe *pipe)
{
K_OOPS(K_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
return z_impl_k_pipe_write_avail(pipe);
}
#include <syscalls/k_pipe_write_avail_mrsh.c>
#endif
#ifdef CONFIG_OBJ_CORE_PIPE
static int init_pipe_obj_core_list(void)
{
/* Initialize pipe object type */
z_obj_type_init(&obj_type_pipe, K_OBJ_TYPE_PIPE_ID,
offsetof(struct k_pipe, obj_core));
/* Initialize and link statically defined pipes */
STRUCT_SECTION_FOREACH(k_pipe, pipe) {
k_obj_core_init_and_link(K_OBJ_CORE(pipe), &obj_type_pipe);
}
return 0;
}
SYS_INIT(init_pipe_obj_core_list, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
#endif