| /* |
| * Copyright (c) 2018 Linaro Limited |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @file |
| * @brief File descriptor table |
| * |
| * This file provides generic file descriptor table implementation, suitable |
| * for any I/O object implementing POSIX I/O semantics (i.e. read/write + |
| * aux operations). |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <zephyr/kernel.h> |
| #include <zephyr/sys/fdtable.h> |
| #include <zephyr/sys/speculation.h> |
| #include <zephyr/syscall_handler.h> |
| #include <zephyr/sys/atomic.h> |
| |
| struct fd_entry { |
| void *obj; |
| const struct fd_op_vtable *vtable; |
| atomic_t refcount; |
| struct k_mutex lock; |
| }; |
| |
| #ifdef CONFIG_POSIX_API |
| static const struct fd_op_vtable stdinout_fd_op_vtable; |
| #endif |
| |
| static struct fd_entry fdtable[CONFIG_POSIX_MAX_FDS] = { |
| #ifdef CONFIG_POSIX_API |
| /* |
| * Predefine entries for stdin/stdout/stderr. |
| */ |
| { |
| /* STDIN */ |
| .vtable = &stdinout_fd_op_vtable, |
| .refcount = ATOMIC_INIT(1) |
| }, |
| { |
| /* STDOUT */ |
| .vtable = &stdinout_fd_op_vtable, |
| .refcount = ATOMIC_INIT(1) |
| }, |
| { |
| /* STDERR */ |
| .vtable = &stdinout_fd_op_vtable, |
| .refcount = ATOMIC_INIT(1) |
| }, |
| #endif |
| }; |
| |
| static K_MUTEX_DEFINE(fdtable_lock); |
| |
| static int z_fd_ref(int fd) |
| { |
| return atomic_inc(&fdtable[fd].refcount) + 1; |
| } |
| |
| static int z_fd_unref(int fd) |
| { |
| atomic_val_t old_rc; |
| |
| /* Reference counter must be checked to avoid decrement refcount below |
| * zero causing file descriptor leak. Loop statement below executes |
| * atomic decrement if refcount value is grater than zero. Otherwise, |
| * refcount is not going to be written. |
| */ |
| do { |
| old_rc = atomic_get(&fdtable[fd].refcount); |
| if (!old_rc) { |
| return 0; |
| } |
| } while (!atomic_cas(&fdtable[fd].refcount, old_rc, old_rc - 1)); |
| |
| if (old_rc != 1) { |
| return old_rc - 1; |
| } |
| |
| fdtable[fd].obj = NULL; |
| fdtable[fd].vtable = NULL; |
| |
| return 0; |
| } |
| |
| static int _find_fd_entry(void) |
| { |
| int fd; |
| |
| for (fd = 0; fd < ARRAY_SIZE(fdtable); fd++) { |
| if (!atomic_get(&fdtable[fd].refcount)) { |
| return fd; |
| } |
| } |
| |
| errno = ENFILE; |
| return -1; |
| } |
| |
| static int _check_fd(int fd) |
| { |
| if (fd < 0 || fd >= ARRAY_SIZE(fdtable)) { |
| errno = EBADF; |
| return -1; |
| } |
| |
| fd = k_array_index_sanitize(fd, ARRAY_SIZE(fdtable)); |
| |
| if (!atomic_get(&fdtable[fd].refcount)) { |
| errno = EBADF; |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| void *z_get_fd_obj(int fd, const struct fd_op_vtable *vtable, int err) |
| { |
| struct fd_entry *entry; |
| |
| if (_check_fd(fd) < 0) { |
| return NULL; |
| } |
| |
| entry = &fdtable[fd]; |
| |
| if (vtable != NULL && entry->vtable != vtable) { |
| errno = err; |
| return NULL; |
| } |
| |
| return entry->obj; |
| } |
| |
| void *z_get_fd_obj_and_vtable(int fd, const struct fd_op_vtable **vtable, |
| struct k_mutex **lock) |
| { |
| struct fd_entry *entry; |
| |
| if (_check_fd(fd) < 0) { |
| return NULL; |
| } |
| |
| entry = &fdtable[fd]; |
| *vtable = entry->vtable; |
| |
| if (lock) { |
| *lock = &entry->lock; |
| } |
| |
| return entry->obj; |
| } |
| |
| int z_reserve_fd(void) |
| { |
| int fd; |
| |
| (void)k_mutex_lock(&fdtable_lock, K_FOREVER); |
| |
| fd = _find_fd_entry(); |
| if (fd >= 0) { |
| /* Mark entry as used, z_finalize_fd() will fill it in. */ |
| (void)z_fd_ref(fd); |
| fdtable[fd].obj = NULL; |
| fdtable[fd].vtable = NULL; |
| k_mutex_init(&fdtable[fd].lock); |
| } |
| |
| k_mutex_unlock(&fdtable_lock); |
| |
| return fd; |
| } |
| |
| void z_finalize_fd(int fd, void *obj, const struct fd_op_vtable *vtable) |
| { |
| /* Assumes fd was already bounds-checked. */ |
| #ifdef CONFIG_USERSPACE |
| /* descriptor context objects are inserted into the table when they |
| * are ready for use. Mark the object as initialized and grant the |
| * caller (and only the caller) access. |
| * |
| * This call is a no-op if obj is invalid or points to something |
| * not a kernel object. |
| */ |
| z_object_recycle(obj); |
| #endif |
| fdtable[fd].obj = obj; |
| fdtable[fd].vtable = vtable; |
| |
| /* Let the object know about the lock just in case it needs it |
| * for something. For BSD sockets, the lock is used with condition |
| * variables to avoid keeping the lock for a long period of time. |
| */ |
| if (vtable && vtable->ioctl) { |
| (void)z_fdtable_call_ioctl(vtable, obj, ZFD_IOCTL_SET_LOCK, |
| &fdtable[fd].lock); |
| } |
| } |
| |
| void z_free_fd(int fd) |
| { |
| /* Assumes fd was already bounds-checked. */ |
| (void)z_fd_unref(fd); |
| } |
| |
| int z_alloc_fd(void *obj, const struct fd_op_vtable *vtable) |
| { |
| int fd; |
| |
| fd = z_reserve_fd(); |
| if (fd >= 0) { |
| z_finalize_fd(fd, obj, vtable); |
| } |
| |
| return fd; |
| } |
| |
| #ifdef CONFIG_POSIX_API |
| |
| ssize_t read(int fd, void *buf, size_t sz) |
| { |
| ssize_t res; |
| |
| if (_check_fd(fd) < 0) { |
| return -1; |
| } |
| |
| (void)k_mutex_lock(&fdtable[fd].lock, K_FOREVER); |
| |
| res = fdtable[fd].vtable->read(fdtable[fd].obj, buf, sz); |
| |
| k_mutex_unlock(&fdtable[fd].lock); |
| |
| return res; |
| } |
| FUNC_ALIAS(read, _read, ssize_t); |
| |
| ssize_t write(int fd, const void *buf, size_t sz) |
| { |
| ssize_t res; |
| |
| if (_check_fd(fd) < 0) { |
| return -1; |
| } |
| |
| (void)k_mutex_lock(&fdtable[fd].lock, K_FOREVER); |
| |
| res = fdtable[fd].vtable->write(fdtable[fd].obj, buf, sz); |
| |
| k_mutex_unlock(&fdtable[fd].lock); |
| |
| return res; |
| } |
| FUNC_ALIAS(write, _write, ssize_t); |
| |
| int close(int fd) |
| { |
| int res; |
| |
| if (_check_fd(fd) < 0) { |
| return -1; |
| } |
| |
| (void)k_mutex_lock(&fdtable[fd].lock, K_FOREVER); |
| |
| res = fdtable[fd].vtable->close(fdtable[fd].obj); |
| |
| k_mutex_unlock(&fdtable[fd].lock); |
| |
| z_free_fd(fd); |
| |
| return res; |
| } |
| FUNC_ALIAS(close, _close, int); |
| |
| int fsync(int fd) |
| { |
| if (_check_fd(fd) < 0) { |
| return -1; |
| } |
| |
| return z_fdtable_call_ioctl(fdtable[fd].vtable, fdtable[fd].obj, ZFD_IOCTL_FSYNC); |
| } |
| |
| off_t lseek(int fd, off_t offset, int whence) |
| { |
| if (_check_fd(fd) < 0) { |
| return -1; |
| } |
| |
| return z_fdtable_call_ioctl(fdtable[fd].vtable, fdtable[fd].obj, ZFD_IOCTL_LSEEK, |
| offset, whence); |
| } |
| FUNC_ALIAS(lseek, _lseek, off_t); |
| |
| int ioctl(int fd, unsigned long request, ...) |
| { |
| va_list args; |
| int res; |
| |
| if (_check_fd(fd) < 0) { |
| return -1; |
| } |
| |
| va_start(args, request); |
| res = fdtable[fd].vtable->ioctl(fdtable[fd].obj, request, args); |
| va_end(args); |
| |
| return res; |
| } |
| |
| int fcntl(int fd, int cmd, ...) |
| { |
| va_list args; |
| int res; |
| |
| if (_check_fd(fd) < 0) { |
| return -1; |
| } |
| |
| /* Handle fdtable commands. */ |
| if (cmd == F_DUPFD) { |
| /* Not implemented so far. */ |
| errno = EINVAL; |
| return -1; |
| } |
| |
| /* The rest of commands are per-fd, handled by ioctl vmethod. */ |
| va_start(args, cmd); |
| res = fdtable[fd].vtable->ioctl(fdtable[fd].obj, cmd, args); |
| va_end(args); |
| |
| return res; |
| } |
| |
| /* |
| * fd operations for stdio/stdout/stderr |
| */ |
| |
| int z_impl_zephyr_write_stdout(const char *buf, int nbytes); |
| |
| static ssize_t stdinout_read_vmeth(void *obj, void *buffer, size_t count) |
| { |
| return 0; |
| } |
| |
| static ssize_t stdinout_write_vmeth(void *obj, const void *buffer, size_t count) |
| { |
| #if defined(CONFIG_BOARD_NATIVE_POSIX) |
| return write(1, buffer, count); |
| #elif defined(CONFIG_NEWLIB_LIBC) || defined(CONFIG_ARCMWDT_LIBC) |
| return z_impl_zephyr_write_stdout(buffer, count); |
| #else |
| return 0; |
| #endif |
| } |
| |
| static int stdinout_ioctl_vmeth(void *obj, unsigned int request, va_list args) |
| { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| |
| static const struct fd_op_vtable stdinout_fd_op_vtable = { |
| .read = stdinout_read_vmeth, |
| .write = stdinout_write_vmeth, |
| .ioctl = stdinout_ioctl_vmeth, |
| }; |
| |
| #endif /* CONFIG_POSIX_API */ |