blob: 17e20361861be5890e1d6aef2a7d9994b6f2ac40 [file] [log] [blame]
/* dw_i2c.c - I2C file for Design Ware */
/*
* Copyright (c) 2015 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stddef.h>
#include <zephyr/types.h>
#include <stdlib.h>
#include <stdbool.h>
#include <drivers/i2c.h>
#include <kernel.h>
#include <init.h>
#include <arch/cpu.h>
#include <string.h>
#include <soc.h>
#include <errno.h>
#include <sys/sys_io.h>
#include <sys/util.h>
#ifdef CONFIG_IOAPIC
#include <drivers/interrupt_controller/ioapic.h>
#endif
#include "i2c_dw.h"
#include "i2c_dw_registers.h"
#define LOG_LEVEL CONFIG_I2C_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(i2c_dw);
#include "i2c-priv.h"
static inline void i2c_dw_data_ask(struct device *dev)
{
struct i2c_dw_dev_config * const dw = dev->driver_data;
uint32_t data;
uint8_t tx_empty;
int8_t rx_empty;
uint8_t cnt;
volatile struct i2c_dw_registers * const regs = dw->regs;
/* No more bytes to request, so command queue is no longer needed */
if (dw->request_bytes == 0U) {
regs->ic_intr_mask.bits.tx_empty = 0U;
return;
}
/* How many bytes we can actually ask */
rx_empty = (I2C_DW_FIFO_DEPTH - regs->ic_rxflr) - dw->rx_pending;
if (rx_empty < 0) {
/* RX FIFO expected to be full.
* So don't request any bytes, yet.
*/
return;
}
/* How many empty slots in TX FIFO (as command queue) */
tx_empty = I2C_DW_FIFO_DEPTH - regs->ic_txflr;
/* Figure out how many bytes we can request */
cnt = MIN(I2C_DW_FIFO_DEPTH, dw->request_bytes);
cnt = MIN(MIN(tx_empty, rx_empty), cnt);
while (cnt > 0) {
/* Tell controller to get another byte */
data = IC_DATA_CMD_CMD;
/* Send RESTART if needed */
if (dw->xfr_flags & I2C_MSG_RESTART) {
data |= IC_DATA_CMD_RESTART;
dw->xfr_flags &= ~(I2C_MSG_RESTART);
}
/* After receiving the last byte, send STOP if needed */
if ((dw->xfr_flags & I2C_MSG_STOP)
&& (dw->request_bytes == 1U)) {
data |= IC_DATA_CMD_STOP;
}
regs->ic_data_cmd.raw = data;
dw->rx_pending++;
dw->request_bytes--;
cnt--;
}
}
static void i2c_dw_data_read(struct device *dev)
{
struct i2c_dw_dev_config * const dw = dev->driver_data;
volatile struct i2c_dw_registers * const regs = dw->regs;
while (regs->ic_status.bits.rfne && (dw->xfr_len > 0)) {
dw->xfr_buf[0] = regs->ic_data_cmd.raw;
dw->xfr_buf++;
dw->xfr_len--;
dw->rx_pending--;
if (dw->xfr_len == 0U) {
break;
}
}
/* Nothing to receive anymore */
if (dw->xfr_len == 0U) {
dw->state &= ~I2C_DW_CMD_RECV;
return;
}
}
static int i2c_dw_data_send(struct device *dev)
{
struct i2c_dw_dev_config * const dw = dev->driver_data;
uint32_t data = 0U;
volatile struct i2c_dw_registers * const regs = dw->regs;
/* Nothing to send anymore, mask the interrupt */
if (dw->xfr_len == 0U) {
regs->ic_intr_mask.bits.tx_empty = 0U;
dw->state &= ~I2C_DW_CMD_SEND;
return 0;
}
while (regs->ic_status.bits.tfnf && (dw->xfr_len > 0)) {
/* We have something to transmit to a specific host */
data = dw->xfr_buf[0];
/* Send RESTART if needed */
if (dw->xfr_flags & I2C_MSG_RESTART) {
data |= IC_DATA_CMD_RESTART;
dw->xfr_flags &= ~(I2C_MSG_RESTART);
}
/* Send STOP if needed */
if ((dw->xfr_len == 1U) && (dw->xfr_flags & I2C_MSG_STOP)) {
data |= IC_DATA_CMD_STOP;
}
regs->ic_data_cmd.raw = data;
dw->xfr_len--;
dw->xfr_buf++;
if (regs->ic_intr_stat.bits.tx_abrt) {
return -EIO;
}
}
return 0;
}
static inline void i2c_dw_transfer_complete(struct device *dev)
{
struct i2c_dw_dev_config * const dw = dev->driver_data;
uint32_t value;
volatile struct i2c_dw_registers * const regs = dw->regs;
regs->ic_intr_mask.raw = DW_DISABLE_ALL_I2C_INT;
value = regs->ic_clr_intr;
k_sem_give(&dw->device_sync_sem);
}
static void i2c_dw_isr(void *arg)
{
struct device *port = (struct device *)arg;
struct i2c_dw_dev_config * const dw = port->driver_data;
union ic_interrupt_register intr_stat;
uint32_t value;
int ret = 0;
volatile struct i2c_dw_registers * const regs = dw->regs;
/* Cache ic_intr_stat for processing, so there is no need to read
* the register multiple times.
*/
intr_stat.raw = regs->ic_intr_stat.raw;
/*
* Causes of an interrupt:
* - STOP condition is detected
* - Transfer is aborted
* - Transmit FIFO is empty
* - Transmit FIFO has overflowed
* - Receive FIFO is full
* - Receive FIFO has overflowed
* - Received FIFO has underrun
* - Transmit data is required (tx_req)
* - Receive data is available (rx_avail)
*/
LOG_DBG("I2C: interrupt received");
/* Check if we are configured as a master device */
if (regs->ic_con.bits.master_mode) {
/* Bail early if there is any error. */
if ((DW_INTR_STAT_TX_ABRT | DW_INTR_STAT_TX_OVER |
DW_INTR_STAT_RX_OVER | DW_INTR_STAT_RX_UNDER) &
intr_stat.raw) {
dw->state = I2C_DW_CMD_ERROR;
goto done;
}
/* Check if the RX FIFO reached threshold */
if (intr_stat.bits.rx_full) {
i2c_dw_data_read(port);
}
/* Check if the TX FIFO is ready for commands.
* TX FIFO also serves as command queue where read requests
* are written to TX FIFO.
*/
if (intr_stat.bits.tx_empty) {
if ((dw->xfr_flags & I2C_MSG_RW_MASK)
== I2C_MSG_WRITE) {
ret = i2c_dw_data_send(port);
} else {
i2c_dw_data_ask(port);
}
/* If STOP is not expected, finish processing this
* message if there is nothing left to do anymore.
*/
if (((dw->xfr_len == 0U)
&& !(dw->xfr_flags & I2C_MSG_STOP))
|| (ret != 0)) {
goto done;
}
}
}
/* STOP detected: finish processing this message */
if (intr_stat.bits.stop_det) {
value = regs->ic_clr_stop_det;
goto done;
}
return;
done:
i2c_dw_transfer_complete(port);
}
static int i2c_dw_setup(struct device *dev, uint16_t slave_address)
{
struct i2c_dw_dev_config * const dw = dev->driver_data;
uint32_t value;
union ic_con_register ic_con;
volatile struct i2c_dw_registers * const regs = dw->regs;
ic_con.raw = 0U;
/* Disable the device controller to be able set TAR */
regs->ic_enable.bits.enable = 0U;
/* Disable interrupts */
regs->ic_intr_mask.raw = 0U;
/* Clear interrupts */
value = regs->ic_clr_intr;
/* Set master or slave mode - (initialization = slave) */
if (I2C_MODE_MASTER & dw->app_config) {
/*
* Make sure to set both the master_mode and slave_disable_bit
* to both 0 or both 1
*/
LOG_DBG("I2C: host configured as Master Device");
ic_con.bits.master_mode = 1U;
ic_con.bits.slave_disable = 1U;
} else {
return -EINVAL;
}
ic_con.bits.restart_en = 1U;
/* Set addressing mode - (initialization = 7 bit) */
if (I2C_ADDR_10_BITS & dw->app_config) {
LOG_DBG("I2C: using 10-bit address");
ic_con.bits.addr_master_10bit = 1U;
ic_con.bits.addr_slave_10bit = 1U;
}
/* Setup the clock frequency and speed mode */
switch (I2C_SPEED_GET(dw->app_config)) {
case I2C_SPEED_STANDARD:
LOG_DBG("I2C: speed set to STANDARD");
regs->ic_ss_scl_lcnt = dw->lcnt;
regs->ic_ss_scl_hcnt = dw->hcnt;
ic_con.bits.speed = I2C_DW_SPEED_STANDARD;
break;
case I2C_SPEED_FAST:
/* fall through */
case I2C_SPEED_FAST_PLUS:
LOG_DBG("I2C: speed set to FAST or FAST_PLUS");
regs->ic_fs_scl_lcnt = dw->lcnt;
regs->ic_fs_scl_hcnt = dw->hcnt;
ic_con.bits.speed = I2C_DW_SPEED_FAST;
break;
case I2C_SPEED_HIGH:
if (!dw->support_hs_mode) {
return -EINVAL;
}
LOG_DBG("I2C: speed set to HIGH");
regs->ic_hs_scl_lcnt = dw->lcnt;
regs->ic_hs_scl_hcnt = dw->hcnt;
ic_con.bits.speed = I2C_DW_SPEED_HIGH;
break;
default:
LOG_DBG("I2C: invalid speed requested");
return -EINVAL;
}
LOG_DBG("I2C: lcnt = %d", dw->lcnt);
LOG_DBG("I2C: hcnt = %d", dw->hcnt);
/* Set the IC_CON register */
regs->ic_con = ic_con;
/* Set RX fifo threshold level.
* Setting it to zero automatically triggers interrupt
* RX_FULL whenever there is data received.
*
* TODO: extend the threshold for multi-byte RX.
*/
regs->ic_rx_tl = 0U;
/* Set TX fifo threshold level.
* TX_EMPTY interrupt is triggered only when the
* TX FIFO is truly empty. So that we can let
* the controller do the transfers for longer period
* before we need to fill the FIFO again. This may
* cause some pauses during transfers, but this keeps
* the device from interrupting often.
*/
regs->ic_tx_tl = 0U;
if (regs->ic_con.bits.master_mode) {
/* Set address of target slave */
regs->ic_tar.bits.ic_tar = slave_address;
} else {
/* Set slave address for device */
regs->ic_sar.bits.ic_sar = slave_address;
}
/* If I2C is being operated in master mode and I2C_DYNAMIC_TAR_UPDATE
* configuration parameter is set to Yes (1), the ic_10bitaddr_master
* bit in ic_tar register would control whether the DW_apb_i2c starts
* its transfers in 7-bit or 10-bit addressing mode.
*/
if (I2C_MODE_MASTER & dw->app_config) {
if (I2C_ADDR_10_BITS & dw->app_config) {
regs->ic_tar.bits.ic_10bitaddr_master = 1U;
} else {
regs->ic_tar.bits.ic_10bitaddr_master = 0U;
}
}
return 0;
}
static int i2c_dw_transfer(struct device *dev,
struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t slave_address)
{
struct i2c_dw_dev_config * const dw = dev->driver_data;
struct i2c_msg *cur_msg = msgs;
uint8_t msg_left = num_msgs;
uint8_t pflags;
int ret;
volatile struct i2c_dw_registers * const regs = dw->regs;
__ASSERT_NO_MSG(msgs);
if (!num_msgs) {
return 0;
}
/* First step, check if there is current activity */
if ((regs->ic_status.bits.activity) || (dw->state & I2C_DW_BUSY)) {
return -EIO;
}
dw->state |= I2C_DW_BUSY;
ret = i2c_dw_setup(dev, slave_address);
if (ret) {
dw->state = I2C_DW_STATE_READY;
return ret;
}
/* Enable controller */
regs->ic_enable.bits.enable = 1U;
/*
* While waiting at device_sync_sem, kernel can switch to idle
* task which in turn can call sys_suspend() hook of Power
* Management App (PMA).
* device_busy_set() call here, would indicate to PMA that it should not
* execute PM policies that would turn off this ip block, causing an
* ongoing hw transaction to be left in an inconsistent state.
* Note : This is just a sample to show a possible use of the API, it is
* upto the driver expert to see, if he actually needs it here, or
* somewhere else, or not needed as the driver's suspend()/resume()
* can handle everything
*/
device_busy_set(dev);
/* Process all the messages */
while (msg_left > 0) {
pflags = dw->xfr_flags;
dw->xfr_buf = cur_msg->buf;
dw->xfr_len = cur_msg->len;
dw->xfr_flags = cur_msg->flags;
dw->rx_pending = 0U;
/* Need to RESTART if changing transfer direction */
if ((pflags & I2C_MSG_RW_MASK)
!= (dw->xfr_flags & I2C_MSG_RW_MASK)) {
dw->xfr_flags |= I2C_MSG_RESTART;
}
/* Send STOP if this is the last message */
if (msg_left == 1U) {
dw->xfr_flags |= I2C_MSG_STOP;
}
dw->state &= ~(I2C_DW_CMD_SEND | I2C_DW_CMD_RECV);
if ((dw->xfr_flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) {
dw->state |= I2C_DW_CMD_SEND;
dw->request_bytes = 0U;
} else {
dw->state |= I2C_DW_CMD_RECV;
dw->request_bytes = dw->xfr_len;
}
/* Enable interrupts to trigger ISR */
if (regs->ic_con.bits.master_mode) {
/* Enable necessary interrupts */
regs->ic_intr_mask.raw = (DW_ENABLE_TX_INT_I2C_MASTER |
DW_ENABLE_RX_INT_I2C_MASTER);
} else {
/* Enable necessary interrupts */
regs->ic_intr_mask.raw = DW_ENABLE_TX_INT_I2C_SLAVE;
}
/* Wait for transfer to be done */
k_sem_take(&dw->device_sync_sem, K_FOREVER);
if (dw->state & I2C_DW_CMD_ERROR) {
ret = -EIO;
break;
}
/* Something wrong if there is something left to do */
if (dw->xfr_len > 0) {
ret = -EIO;
break;
}
cur_msg++;
msg_left--;
}
device_busy_clear(dev);
dw->state = I2C_DW_STATE_READY;
return ret;
}
static int i2c_dw_runtime_configure(struct device *dev, uint32_t config)
{
struct i2c_dw_dev_config * const dw = dev->driver_data;
uint32_t value = 0U;
uint32_t rc = 0U;
volatile struct i2c_dw_registers * const regs = dw->regs;
dw->app_config = config;
/* Make sure we have a supported speed for the DesignWare model */
/* and have setup the clock frequency and speed mode */
switch (I2C_SPEED_GET(dw->app_config)) {
case I2C_SPEED_STANDARD:
/* Following the directions on DW spec page 59, IC_SS_SCL_LCNT
* must have register values larger than IC_FS_SPKLEN + 7
*/
if (I2C_STD_LCNT <= (regs->ic_fs_spklen + 7)) {
value = regs->ic_fs_spklen + 8;
} else {
value = I2C_STD_LCNT;
}
dw->lcnt = value;
/* Following the directions on DW spec page 59, IC_SS_SCL_HCNT
* must have register values larger than IC_FS_SPKLEN + 5
*/
if (I2C_STD_HCNT <= (regs->ic_fs_spklen + 5)) {
value = regs->ic_fs_spklen + 6;
} else {
value = I2C_STD_HCNT;
}
dw->hcnt = value;
break;
case I2C_SPEED_FAST:
/* fall through */
case I2C_SPEED_FAST_PLUS:
/*
* Following the directions on DW spec page 59, IC_FS_SCL_LCNT
* must have register values larger than IC_FS_SPKLEN + 7
*/
if (I2C_FS_LCNT <= (regs->ic_fs_spklen + 7)) {
value = regs->ic_fs_spklen + 8;
} else {
value = I2C_FS_LCNT;
}
dw->lcnt = value;
/*
* Following the directions on DW spec page 59, IC_FS_SCL_HCNT
* must have register values larger than IC_FS_SPKLEN + 5
*/
if (I2C_FS_HCNT <= (regs->ic_fs_spklen + 5)) {
value = regs->ic_fs_spklen + 6;
} else {
value = I2C_FS_HCNT;
}
dw->hcnt = value;
break;
case I2C_SPEED_HIGH:
if (dw->support_hs_mode) {
if (I2C_HS_LCNT <= (regs->ic_hs_spklen + 7)) {
value = regs->ic_hs_spklen + 8;
} else {
value = I2C_HS_LCNT;
}
dw->lcnt = value;
if (I2C_HS_HCNT <= (regs->ic_hs_spklen + 5)) {
value = regs->ic_hs_spklen + 6;
} else {
value = I2C_HS_HCNT;
}
dw->hcnt = value;
} else {
rc = -EINVAL;
}
break;
default:
/* TODO change */
rc = -EINVAL;
}
/*
* Clear any interrupts currently waiting in the controller
*/
value = regs->ic_clr_intr;
/*
* TEMPORARY HACK - The I2C does not work in any mode other than Master
* currently. This "hack" forces us to always be configured for master
* mode, until we can verify that Slave mode works correctly.
*/
dw->app_config |= I2C_MODE_MASTER;
return rc;
}
static const struct i2c_driver_api funcs = {
.configure = i2c_dw_runtime_configure,
.transfer = i2c_dw_transfer,
};
static int i2c_dw_initialize(struct device *dev)
{
const struct i2c_dw_rom_config * const rom = dev->config_info;
struct i2c_dw_dev_config * const dw = dev->driver_data;
volatile struct i2c_dw_registers *regs;
#ifdef I2C_DW_PCIE_ENABLED
if (rom->pcie) {
if (!pcie_probe(rom->pcie_bdf, rom->pcie_id)) {
return -EINVAL;
}
dw->regs = UINT_TO_POINTER(pcie_get_mbar(rom->pcie_bdf, 0));
pcie_set_cmd(rom->pcie_bdf, PCIE_CONF_CMDSTAT_MEM, true);
}
#endif
k_sem_init(&dw->device_sync_sem, 0, UINT_MAX);
regs = dw->regs;
/* verify that we have a valid DesignWare register first */
if (regs->ic_comp_type != I2C_DW_MAGIC_KEY) {
dev->driver_api = NULL;
LOG_DBG("I2C: DesignWare magic key not found, check base "
"address. Stopping initialization");
return -EIO;
}
/*
* grab the default value on initialization. This should be set to the
* IC_MAX_SPEED_MODE in the hardware. If it does support high speed we
* can move provide support for it
*/
if (regs->ic_con.bits.speed == I2C_DW_SPEED_HIGH) {
LOG_DBG("I2C: high speed supported");
dw->support_hs_mode = true;
} else {
LOG_DBG("I2C: high speed NOT supported");
dw->support_hs_mode = false;
}
rom->config_func(dev);
dw->app_config = I2C_MODE_MASTER | i2c_map_dt_bitrate(rom->bitrate);
if (i2c_dw_runtime_configure(dev, dw->app_config) != 0) {
LOG_DBG("I2C: Cannot set default configuration");
return -EIO;
}
dw->state = I2C_DW_STATE_READY;
return 0;
}
#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)
#include <i2c_dw_port_0.h>
#endif
#if DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay)
#include <i2c_dw_port_1.h>
#endif
#if DT_NODE_HAS_STATUS(DT_DRV_INST(2), okay)
#include <i2c_dw_port_2.h>
#endif
#if DT_NODE_HAS_STATUS(DT_DRV_INST(3), okay)
#include <i2c_dw_port_3.h>
#endif
#if DT_NODE_HAS_STATUS(DT_DRV_INST(4), okay)
#include <i2c_dw_port_4.h>
#endif
#if DT_NODE_HAS_STATUS(DT_DRV_INST(5), okay)
#include <i2c_dw_port_5.h>
#endif
#if DT_NODE_HAS_STATUS(DT_DRV_INST(6), okay)
#include <i2c_dw_port_6.h>
#endif
#if DT_NODE_HAS_STATUS(DT_DRV_INST(7), okay)
#include <i2c_dw_port_7.h>
#endif