blob: 3e1c95323e257be10c3f84a1c356e3e09e21fcf7 [file] [log] [blame]
/* udp.c - UDP specific code for echo client */
/*
* Copyright (c) 2017 Intel Corporation.
* Copyright (c) 2018 Nordic Semiconductor ASA.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(net_echo_client_sample, LOG_LEVEL_DBG);
#include <zephyr/zephyr.h>
#include <errno.h>
#include <stdio.h>
#include <zephyr/net/socket.h>
#include <zephyr/net/tls_credentials.h>
#include <zephyr/random/rand32.h>
#include "common.h"
#include "ca_certificate.h"
#define RECV_BUF_SIZE 1280
#define UDP_SLEEP K_MSEC(150)
#define UDP_WAIT K_SECONDS(10)
static APP_BMEM char recv_buf[RECV_BUF_SIZE];
static int send_udp_data(struct data *data)
{
int ret;
do {
data->udp.expecting = sys_rand32_get() % ipsum_len;
} while (data->udp.expecting == 0U ||
data->udp.expecting > data->udp.mtu);
ret = send(data->udp.sock, lorem_ipsum, data->udp.expecting, 0);
LOG_DBG("%s UDP: Sent %d bytes", data->proto, data->udp.expecting);
k_work_reschedule(&data->udp.recv, UDP_WAIT);
return ret < 0 ? -EIO : 0;
}
static int compare_udp_data(struct data *data, const char *buf, uint32_t received)
{
if (received != data->udp.expecting) {
LOG_ERR("Invalid amount of data received: UDP %s", data->proto);
return -EIO;
}
if (memcmp(buf, lorem_ipsum, received) != 0) {
LOG_ERR("Invalid data received: UDP %s", data->proto);
return -EIO;
}
return 0;
}
static void wait_reply(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
/* This means that we did not receive response in time. */
struct data *data = CONTAINER_OF(dwork, struct data, udp.recv);
LOG_ERR("UDP %s: Data packet not received", data->proto);
/* Send a new packet at this point */
send_udp_data(data);
}
static void wait_transmit(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct data *data = CONTAINER_OF(dwork, struct data, udp.transmit);
send_udp_data(data);
}
static int start_udp_proto(struct data *data, struct sockaddr *addr,
socklen_t addrlen)
{
int ret;
k_work_init_delayable(&data->udp.recv, wait_reply);
k_work_init_delayable(&data->udp.transmit, wait_transmit);
#if defined(CONFIG_NET_SOCKETS_SOCKOPT_TLS)
data->udp.sock = socket(addr->sa_family, SOCK_DGRAM, IPPROTO_DTLS_1_2);
#else
data->udp.sock = socket(addr->sa_family, SOCK_DGRAM, IPPROTO_UDP);
#endif
if (data->udp.sock < 0) {
LOG_ERR("Failed to create UDP socket (%s): %d", data->proto,
errno);
return -errno;
}
#if defined(CONFIG_NET_SOCKETS_SOCKOPT_TLS)
sec_tag_t sec_tag_list[] = {
CA_CERTIFICATE_TAG,
#if defined(CONFIG_MBEDTLS_KEY_EXCHANGE_PSK_ENABLED)
PSK_TAG,
#endif
};
ret = setsockopt(data->udp.sock, SOL_TLS, TLS_SEC_TAG_LIST,
sec_tag_list, sizeof(sec_tag_list));
if (ret < 0) {
LOG_ERR("Failed to set TLS_SEC_TAG_LIST option (%s): %d",
data->proto, errno);
ret = -errno;
}
ret = setsockopt(data->udp.sock, SOL_TLS, TLS_HOSTNAME,
TLS_PEER_HOSTNAME, sizeof(TLS_PEER_HOSTNAME));
if (ret < 0) {
LOG_ERR("Failed to set TLS_HOSTNAME option (%s): %d",
data->proto, errno);
ret = -errno;
}
#endif
/* Call connect so we can use send and recv. */
ret = connect(data->udp.sock, addr, addrlen);
if (ret < 0) {
LOG_ERR("Cannot connect to UDP remote (%s): %d", data->proto,
errno);
ret = -errno;
}
return ret;
}
static int process_udp_proto(struct data *data)
{
int ret, received;
received = recv(data->udp.sock, recv_buf, sizeof(recv_buf),
MSG_DONTWAIT);
if (received == 0) {
return -EIO;
}
if (received < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
ret = 0;
} else {
ret = -errno;
}
return ret;
}
ret = compare_udp_data(data, recv_buf, received);
if (ret != 0) {
LOG_WRN("%s UDP: Received and compared %d bytes, data "
"mismatch", data->proto, received);
return 0;
}
/* Correct response received */
LOG_DBG("%s UDP: Received and compared %d bytes, all ok",
data->proto, received);
if (++data->udp.counter % 1000 == 0U) {
LOG_INF("%s UDP: Exchanged %u packets", data->proto,
data->udp.counter);
}
k_work_cancel_delayable(&data->udp.recv);
/* Do not flood the link if we have also TCP configured */
if (IS_ENABLED(CONFIG_NET_TCP)) {
k_work_reschedule(&data->udp.transmit, UDP_SLEEP);
ret = 0;
} else {
ret = send_udp_data(data);
}
return ret;
}
int start_udp(void)
{
int ret = 0;
struct sockaddr_in addr4;
struct sockaddr_in6 addr6;
if (IS_ENABLED(CONFIG_NET_IPV6)) {
addr6.sin6_family = AF_INET6;
addr6.sin6_port = htons(PEER_PORT);
inet_pton(AF_INET6, CONFIG_NET_CONFIG_PEER_IPV6_ADDR,
&addr6.sin6_addr);
ret = start_udp_proto(&conf.ipv6, (struct sockaddr *)&addr6,
sizeof(addr6));
if (ret < 0) {
return ret;
}
}
if (IS_ENABLED(CONFIG_NET_IPV4)) {
addr4.sin_family = AF_INET;
addr4.sin_port = htons(PEER_PORT);
inet_pton(AF_INET, CONFIG_NET_CONFIG_PEER_IPV4_ADDR,
&addr4.sin_addr);
ret = start_udp_proto(&conf.ipv4, (struct sockaddr *)&addr4,
sizeof(addr4));
if (ret < 0) {
return ret;
}
}
if (IS_ENABLED(CONFIG_NET_IPV6)) {
ret = send_udp_data(&conf.ipv6);
if (ret < 0) {
return ret;
}
}
if (IS_ENABLED(CONFIG_NET_IPV4)) {
ret = send_udp_data(&conf.ipv4);
}
return ret;
}
int process_udp(void)
{
int ret = 0;
if (IS_ENABLED(CONFIG_NET_IPV6)) {
ret = process_udp_proto(&conf.ipv6);
if (ret < 0) {
return ret;
}
}
if (IS_ENABLED(CONFIG_NET_IPV4)) {
ret = process_udp_proto(&conf.ipv4);
if (ret < 0) {
return ret;
}
}
return ret;
}
void stop_udp(void)
{
if (IS_ENABLED(CONFIG_NET_IPV6)) {
k_work_cancel_delayable(&conf.ipv6.udp.recv);
k_work_cancel_delayable(&conf.ipv6.udp.transmit);
if (conf.ipv6.udp.sock >= 0) {
(void)close(conf.ipv6.udp.sock);
}
}
if (IS_ENABLED(CONFIG_NET_IPV4)) {
k_work_cancel_delayable(&conf.ipv4.udp.recv);
k_work_cancel_delayable(&conf.ipv4.udp.transmit);
if (conf.ipv4.udp.sock >= 0) {
(void)close(conf.ipv4.udp.sock);
}
}
}