blob: 0caa535529cf5b0110799fabfdb71e2f169c923e [file] [log] [blame]
/*
* Copyright 2021,2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_imx_flexspi_mx25um51345g
#include <zephyr/drivers/flash.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include <zephyr/sys/util.h>
#include "spi_nor.h"
#include "memc_mcux_flexspi.h"
#ifdef CONFIG_HAS_MCUX_CACHE
#include <fsl_cache.h>
#endif
#define NOR_WRITE_SIZE 1
#define NOR_ERASE_VALUE 0xff
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER
static uint8_t nor_write_buf[SPI_NOR_PAGE_SIZE];
#endif
/*
* NOTE: If CONFIG_FLASH_MCUX_FLEXSPI_XIP is selected, Any external functions
* called while interacting with the flexspi MUST be relocated to SRAM or ITCM
* at runtime, so that the chip does not access the flexspi to read program
* instructions while it is being written to
*
* Additionally, no data used by this driver should be stored in flash.
*/
#if defined(CONFIG_FLASH_MCUX_FLEXSPI_XIP) && (CONFIG_FLASH_LOG_LEVEL > 0)
#warning "Enabling flash driver logging and XIP mode simultaneously can cause \
read-while-write hazards. This configuration is not recommended."
#endif
/* FLASH_ENABLE_OCTAL_CMD: (01 = STR OPI Enable) , (02 = DTR OPI Enable) */
#if CONFIG_FLASH_MCUX_FLEXSPI_MX25UM51345G_OPI_DTR
#define NOR_FLASH_ENABLE_OCTAL_CMD 0x2
#else
#define NOR_FLASH_ENABLE_OCTAL_CMD 0x1
#endif
LOG_MODULE_REGISTER(flash_flexspi_nor, CONFIG_FLASH_LOG_LEVEL);
enum {
/* Instructions matching with XIP layout */
READ,
WRITE_ENABLE_OPI,
WRITE_ENABLE,
ERASE_SECTOR,
PAGE_PROGRAM_INPUT,
PAGE_PROGRAM,
READ_ID_OPI,
ENTER_OPI,
READ_STATUS_REG,
ERASE_CHIP,
};
/* Device variables used in critical sections should be in this structure */
struct flash_flexspi_nor_data {
const struct device *controller;
flexspi_device_config_t config;
flexspi_port_t port;
struct flash_pages_layout layout;
struct flash_parameters flash_parameters;
};
static const uint32_t flash_flexspi_nor_lut[][4] = {
[READ_ID_OPI] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x9F,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x60),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_DUMMY_DDR, kFLEXSPI_8PAD, 0x16),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
},
[WRITE_ENABLE] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x06,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
[ENTER_OPI] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x72,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x20),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
#if (NOR_FLASH_ENABLE_OCTAL_CMD == 0x1)
[READ_STATUS_REG] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x05,
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0xFA),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_8PAD, 0x14),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_8PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
},
[WRITE_ENABLE_OPI] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x06,
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0xF9),
},
[ERASE_SECTOR] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x21,
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0xDE),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_STOP, kFLEXSPI_8PAD, 0),
},
[ERASE_CHIP] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x60,
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x9F),
},
[READ] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0xEC,
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x13),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_8PAD, 0x14),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_8PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
},
[PAGE_PROGRAM] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x12,
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0xED),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_8PAD, 0x04),
},
#else
[READ_STATUS_REG] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xFA),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x4),
},
[WRITE_ENABLE_OPI] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x06,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xF9),
},
[ERASE_SECTOR] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x21,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xDE),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_STOP, kFLEXSPI_8PAD, 0),
},
[ERASE_CHIP] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x60,
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x9F),
},
[READ] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xEE,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x11),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_DUMMY_DDR, kFLEXSPI_8PAD, 0x08),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
},
[PAGE_PROGRAM] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x12,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xED),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_WRITE_DDR, kFLEXSPI_8PAD, 0x04),
},
#endif
};
static int flash_flexspi_nor_get_vendor_id(const struct device *dev,
uint8_t *vendor_id)
{
struct flash_flexspi_nor_data *data = dev->data;
uint32_t buffer = 0;
int ret;
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.cmdType = kFLEXSPI_Read,
.SeqNumber = 1,
.seqIndex = READ_ID_OPI,
.data = &buffer,
.dataSize = 1,
};
LOG_DBG("Reading id");
ret = memc_flexspi_transfer(data->controller, &transfer);
*vendor_id = buffer;
return ret;
}
static int flash_flexspi_nor_read_status(const struct device *dev,
uint32_t *status)
{
struct flash_flexspi_nor_data *data = dev->data;
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.cmdType = kFLEXSPI_Read,
.SeqNumber = 1,
.seqIndex = READ_STATUS_REG,
.data = status,
.dataSize = 1,
};
LOG_DBG("Reading status register");
return memc_flexspi_transfer(data->controller, &transfer);
}
static int flash_flexspi_nor_write_status(const struct device *dev,
uint32_t *status)
{
struct flash_flexspi_nor_data *data = dev->data;
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.cmdType = kFLEXSPI_Write,
.SeqNumber = 1,
.seqIndex = ENTER_OPI,
.data = status,
.dataSize = 1,
};
LOG_DBG("Writing status register");
return memc_flexspi_transfer(data->controller, &transfer);
}
static int flash_flexspi_nor_write_enable(const struct device *dev,
bool enableOctal)
{
struct flash_flexspi_nor_data *data = dev->data;
flexspi_transfer_t transfer;
transfer.deviceAddress = 0;
transfer.port = data->port;
transfer.cmdType = kFLEXSPI_Command;
transfer.SeqNumber = 1;
if (enableOctal) {
transfer.seqIndex = WRITE_ENABLE_OPI;
} else {
transfer.seqIndex = WRITE_ENABLE;
}
transfer.data = NULL;
transfer.dataSize = 0;
LOG_DBG("Enabling write");
return memc_flexspi_transfer(data->controller, &transfer);
}
static int flash_flexspi_nor_erase_sector(const struct device *dev,
off_t offset)
{
struct flash_flexspi_nor_data *data = dev->data;
flexspi_transfer_t transfer = {
.deviceAddress = offset,
.port = data->port,
.cmdType = kFLEXSPI_Command,
.SeqNumber = 1,
.seqIndex = ERASE_SECTOR,
.data = NULL,
.dataSize = 0,
};
LOG_DBG("Erasing sector at 0x%08zx", (ssize_t) offset);
return memc_flexspi_transfer(data->controller, &transfer);
}
static int flash_flexspi_nor_erase_chip(const struct device *dev)
{
struct flash_flexspi_nor_data *data = dev->data;
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.cmdType = kFLEXSPI_Command,
.SeqNumber = 1,
.seqIndex = ERASE_CHIP,
.data = NULL,
.dataSize = 0,
};
LOG_DBG("Erasing chip");
return memc_flexspi_transfer(data->controller, &transfer);
}
static int flash_flexspi_nor_page_program(const struct device *dev,
off_t offset, const void *buffer, size_t len)
{
struct flash_flexspi_nor_data *data = dev->data;
flexspi_transfer_t transfer = {
.deviceAddress = offset,
.port = data->port,
.cmdType = kFLEXSPI_Write,
.SeqNumber = 1,
.seqIndex = PAGE_PROGRAM,
.data = (uint32_t *) buffer,
.dataSize = len,
};
LOG_DBG("Page programming %d bytes to 0x%08zx", len, (ssize_t) offset);
return memc_flexspi_transfer(data->controller, &transfer);
}
static int flash_flexspi_nor_wait_bus_busy(const struct device *dev)
{
uint32_t status = 0;
int ret;
do {
ret = flash_flexspi_nor_read_status(dev, &status);
LOG_DBG("status: 0x%x", status);
if (ret) {
LOG_ERR("Could not read status");
return ret;
}
} while (status & BIT(0));
return 0;
}
static int flash_flexspi_enable_octal_mode(const struct device *dev)
{
struct flash_flexspi_nor_data *data = dev->data;
/* FLASH_ENABLE_OCTAL_CMD: (01 = STR OPI Enable, 02 = DTR OPI Enable) */
uint32_t status = NOR_FLASH_ENABLE_OCTAL_CMD;
flash_flexspi_nor_write_enable(dev, false);
flash_flexspi_nor_write_status(dev, &status);
flash_flexspi_nor_wait_bus_busy(dev);
memc_flexspi_reset(data->controller);
return 0;
}
static int flash_flexspi_nor_read(const struct device *dev, off_t offset,
void *buffer, size_t len)
{
struct flash_flexspi_nor_data *data = dev->data;
uint8_t *src = memc_flexspi_get_ahb_address(data->controller,
data->port,
offset);
memcpy(buffer, src, len);
return 0;
}
static int flash_flexspi_nor_write(const struct device *dev, off_t offset,
const void *buffer, size_t len)
{
struct flash_flexspi_nor_data *data = dev->data;
size_t size = len;
uint8_t *src = (uint8_t *) buffer;
int i;
unsigned int key = 0;
uint8_t *dst = memc_flexspi_get_ahb_address(data->controller,
data->port,
offset);
if (memc_flexspi_is_running_xip(data->controller)) {
/*
* ==== ENTER CRITICAL SECTION ====
* No flash access should be performed in critical section. All
* code and data accessed must reside in ram.
*/
key = irq_lock();
}
while (len) {
/* If the offset isn't a multiple of the NOR page size, we first need
* to write the remaining part that fits, otherwise the write could
* be wrapped around within the same page
*/
i = MIN(SPI_NOR_PAGE_SIZE - (offset % SPI_NOR_PAGE_SIZE), len);
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER
memcpy(nor_write_buf, src, i);
#endif
flash_flexspi_nor_write_enable(dev, true);
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER
flash_flexspi_nor_page_program(dev, offset, nor_write_buf, i);
#else
flash_flexspi_nor_page_program(dev, offset, src, i);
#endif
flash_flexspi_nor_wait_bus_busy(dev);
memc_flexspi_reset(data->controller);
src += i;
offset += i;
len -= i;
}
if (memc_flexspi_is_running_xip(data->controller)) {
/* ==== EXIT CRITICAL SECTION ==== */
irq_unlock(key);
}
#ifdef CONFIG_HAS_MCUX_CACHE
DCACHE_InvalidateByRange((uint32_t) dst, size);
#endif
return 0;
}
static int flash_flexspi_nor_erase(const struct device *dev, off_t offset,
size_t size)
{
struct flash_flexspi_nor_data *data = dev->data;
int num_sectors = size / SPI_NOR_SECTOR_SIZE;
int i;
unsigned int key = 0;
uint8_t *dst = memc_flexspi_get_ahb_address(data->controller,
data->port,
offset);
if (offset % SPI_NOR_SECTOR_SIZE) {
LOG_ERR("Invalid offset");
return -EINVAL;
}
if (size % SPI_NOR_SECTOR_SIZE) {
LOG_ERR("Invalid size");
return -EINVAL;
}
if (memc_flexspi_is_running_xip(data->controller)) {
/*
* ==== ENTER CRITICAL SECTION ====
* No flash access should be performed in critical section. All
* code and data accessed must reside in ram.
*/
key = irq_lock();
}
if ((offset == 0) && (size == data->config.flashSize * KB(1))) {
flash_flexspi_nor_write_enable(dev, true);
flash_flexspi_nor_erase_chip(dev);
flash_flexspi_nor_wait_bus_busy(dev);
memc_flexspi_reset(data->controller);
} else {
for (i = 0; i < num_sectors; i++) {
flash_flexspi_nor_write_enable(dev, true);
flash_flexspi_nor_erase_sector(dev, offset);
flash_flexspi_nor_wait_bus_busy(dev);
memc_flexspi_reset(data->controller);
offset += SPI_NOR_SECTOR_SIZE;
}
}
if (memc_flexspi_is_running_xip(data->controller)) {
/* ==== EXIT CRITICAL SECTION ==== */
irq_unlock(key);
}
#ifdef CONFIG_HAS_MCUX_CACHE
DCACHE_InvalidateByRange((uint32_t) dst, size);
#endif
return 0;
}
static const struct flash_parameters *flash_flexspi_nor_get_parameters(
const struct device *dev)
{
struct flash_flexspi_nor_data *data = dev->data;
return &data->flash_parameters;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static void flash_flexspi_nor_pages_layout(const struct device *dev,
const struct flash_pages_layout **layout, size_t *layout_size)
{
struct flash_flexspi_nor_data *data = dev->data;
*layout = &data->layout;
*layout_size = 1;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
static int flash_flexspi_nor_init(const struct device *dev)
{
struct flash_flexspi_nor_data *data = dev->data;
uint8_t vendor_id;
uint32_t temp_lut[sizeof(flash_flexspi_nor_lut) / sizeof(uint32_t)];
if (!device_is_ready(data->controller)) {
LOG_ERR("Controller device not ready");
return -ENODEV;
}
if (!memc_flexspi_is_running_xip(data->controller) &&
memc_flexspi_set_device_config(data->controller, &data->config,
data->port)) {
LOG_ERR("Could not set device configuration");
return -EINVAL;
}
/*
* Using the LUT stored in the FlexSPI directly when updating
* the FlexSPI can result in an invalid LUT entry being stored,
* as the LUT itself describes how the FlexSPI should access the flash.
* To resolve this, copy the LUT to a array placed in RAM before
* updating the FlexSPI.
*/
memcpy(temp_lut, flash_flexspi_nor_lut,
sizeof(flash_flexspi_nor_lut));
if (memc_flexspi_update_lut(data->controller, 0,
(const uint32_t *) temp_lut,
sizeof(temp_lut) / sizeof(uint32_t))) {
LOG_ERR("Could not update lut");
return -EINVAL;
}
memc_flexspi_reset(data->controller);
if (flash_flexspi_enable_octal_mode(dev)) {
LOG_ERR("Could not enable octal mode");
return -EIO;
}
if (flash_flexspi_nor_get_vendor_id(dev, &vendor_id)) {
LOG_ERR("Could not read vendor id");
return -EIO;
}
LOG_DBG("Vendor id: 0x%0x", vendor_id);
return 0;
}
static const struct flash_driver_api flash_flexspi_nor_api = {
.erase = flash_flexspi_nor_erase,
.write = flash_flexspi_nor_write,
.read = flash_flexspi_nor_read,
.get_parameters = flash_flexspi_nor_get_parameters,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = flash_flexspi_nor_pages_layout,
#endif
};
#define CONCAT3(x, y, z) x ## y ## z
#define CS_INTERVAL_UNIT(unit) \
CONCAT3(kFLEXSPI_CsIntervalUnit, unit, SckCycle)
#define AHB_WRITE_WAIT_UNIT(unit) \
CONCAT3(kFLEXSPI_AhbWriteWaitUnit, unit, AhbCycle)
#define FLASH_FLEXSPI_DEVICE_CONFIG(n) \
{ \
.flexspiRootClk = MHZ(120), \
.flashSize = DT_INST_PROP(n, size) / 8 / KB(1), \
.CSIntervalUnit = \
CS_INTERVAL_UNIT( \
DT_INST_PROP(n, cs_interval_unit)), \
.CSInterval = DT_INST_PROP(n, cs_interval), \
.CSHoldTime = DT_INST_PROP(n, cs_hold_time), \
.CSSetupTime = DT_INST_PROP(n, cs_setup_time), \
.dataValidTime = DT_INST_PROP(n, data_valid_time), \
.columnspace = DT_INST_PROP(n, column_space), \
.enableWordAddress = DT_INST_PROP(n, word_addressable), \
.AWRSeqIndex = 0, \
.AWRSeqNumber = 0, \
.ARDSeqIndex = READ, \
.ARDSeqNumber = 1, \
.AHBWriteWaitUnit = \
AHB_WRITE_WAIT_UNIT( \
DT_INST_PROP(n, ahb_write_wait_unit)), \
.AHBWriteWaitInterval = \
DT_INST_PROP(n, ahb_write_wait_interval), \
} \
#define FLASH_FLEXSPI_NOR(n) \
static struct flash_flexspi_nor_data \
flash_flexspi_nor_data_##n = { \
.controller = DEVICE_DT_GET(DT_INST_BUS(n)), \
.config = FLASH_FLEXSPI_DEVICE_CONFIG(n), \
.port = DT_INST_REG_ADDR(n), \
.layout = { \
.pages_count = DT_INST_PROP(n, size) / 8 \
/ SPI_NOR_SECTOR_SIZE, \
.pages_size = SPI_NOR_SECTOR_SIZE, \
}, \
.flash_parameters = { \
.write_block_size = NOR_WRITE_SIZE, \
.erase_value = NOR_ERASE_VALUE, \
}, \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
flash_flexspi_nor_init, \
NULL, \
&flash_flexspi_nor_data_##n, \
NULL, \
POST_KERNEL, \
CONFIG_FLASH_INIT_PRIORITY, \
&flash_flexspi_nor_api);
DT_INST_FOREACH_STATUS_OKAY(FLASH_FLEXSPI_NOR)