blob: 6b50242c3fbc691fd712a3af8ae1123aeaa641bd [file] [log] [blame]
/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Kernel thread support
*
* This module provides general purpose thread support.
*/
#include <kernel.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <kernel_structs.h>
#include <misc/printk.h>
#include <sys_clock.h>
#include <drivers/system_timer.h>
#include <ksched.h>
#include <wait_q.h>
#include <atomic.h>
#include <syscall_handler.h>
extern struct _static_thread_data _static_thread_data_list_start[];
extern struct _static_thread_data _static_thread_data_list_end[];
#ifdef CONFIG_USERSPACE
static int thread_count;
/*
* Fetch an unused thread ID. Returns -1 if all thread IDs are in use
*/
static int get_next_thread_index(void)
{
int key, pos = -1;
key = irq_lock();
if (thread_count == CONFIG_MAX_THREAD_BYTES * 8) {
/* We have run out of thread IDs! */
goto out;
}
/* find an unused bit in the kernel's bitfield of in-use thread IDs */
for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
int fs;
fs = find_lsb_set(_kernel.free_thread_ids[i]);
if (fs) {
/* find_lsb_set counts bit positions starting at 1 */
--fs;
_kernel.free_thread_ids[i] &= ~(1 << fs);
pos = fs + (i * 8);
break;
}
}
thread_count++;
out:
irq_unlock(key);
return pos;
}
static void free_thread_index(int id)
{
int index, key;
u8_t bit;
if (id == -1) {
return;
}
key = irq_lock();
thread_count--;
index = id / 8;
bit = 1 << (id % 8);
_kernel.free_thread_ids[index] |= bit;
irq_unlock(key);
}
#endif
#define _FOREACH_STATIC_THREAD(thread_data) \
for (struct _static_thread_data *thread_data = \
_static_thread_data_list_start; \
thread_data < _static_thread_data_list_end; \
thread_data++)
int k_is_in_isr(void)
{
return _is_in_isr();
}
/*
* This function tags the current thread as essential to system operation.
* Exceptions raised by this thread will be treated as a fatal system error.
*/
void _thread_essential_set(void)
{
_current->base.user_options |= K_ESSENTIAL;
}
/*
* This function tags the current thread as not essential to system operation.
* Exceptions raised by this thread may be recoverable.
* (This is the default tag for a thread.)
*/
void _thread_essential_clear(void)
{
_current->base.user_options &= ~K_ESSENTIAL;
}
/*
* This routine indicates if the current thread is an essential system thread.
*
* Returns non-zero if current thread is essential, zero if it is not.
*/
int _is_thread_essential(void)
{
return _current->base.user_options & K_ESSENTIAL;
}
void k_busy_wait(u32_t usec_to_wait)
{
#if defined(CONFIG_TICKLESS_KERNEL) && \
!defined(CONFIG_BUSY_WAIT_USES_ALTERNATE_CLOCK)
int saved_always_on = k_enable_sys_clock_always_on();
#endif
/* use 64-bit math to prevent overflow when multiplying */
u32_t cycles_to_wait = (u32_t)(
(u64_t)usec_to_wait *
(u64_t)sys_clock_hw_cycles_per_sec /
(u64_t)USEC_PER_SEC
);
u32_t start_cycles = k_cycle_get_32();
for (;;) {
u32_t current_cycles = k_cycle_get_32();
/* this handles the rollover on an unsigned 32-bit value */
if ((current_cycles - start_cycles) >= cycles_to_wait) {
break;
}
}
#if defined(CONFIG_TICKLESS_KERNEL) && \
!defined(CONFIG_BUSY_WAIT_USES_ALTERNATE_CLOCK)
_sys_clock_always_on = saved_always_on;
#endif
}
#ifdef CONFIG_THREAD_CUSTOM_DATA
void _impl_k_thread_custom_data_set(void *value)
{
_current->custom_data = value;
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER(k_thread_custom_data_set, data)
{
_impl_k_thread_custom_data_set((void *)data);
return 0;
}
#endif
void *_impl_k_thread_custom_data_get(void)
{
return _current->custom_data;
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER0_SIMPLE(k_thread_custom_data_get);
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_THREAD_CUSTOM_DATA */
#if defined(CONFIG_THREAD_MONITOR)
/*
* Remove a thread from the kernel's list of active threads.
*/
void _thread_monitor_exit(struct k_thread *thread)
{
unsigned int key = irq_lock();
if (thread == _kernel.threads) {
_kernel.threads = _kernel.threads->next_thread;
} else {
struct k_thread *prev_thread;
prev_thread = _kernel.threads;
while (thread != prev_thread->next_thread) {
prev_thread = prev_thread->next_thread;
}
prev_thread->next_thread = thread->next_thread;
}
irq_unlock(key);
}
#endif /* CONFIG_THREAD_MONITOR */
#ifdef CONFIG_STACK_SENTINEL
/* Check that the stack sentinel is still present
*
* The stack sentinel feature writes a magic value to the lowest 4 bytes of
* the thread's stack when the thread is initialized. This value gets checked
* in a few places:
*
* 1) In k_yield() if the current thread is not swapped out
* 2) After servicing a non-nested interrupt
* 3) In _Swap(), check the sentinel in the outgoing thread
*
* Item 2 requires support in arch/ code.
*
* If the check fails, the thread will be terminated appropriately through
* the system fatal error handler.
*/
void _check_stack_sentinel(void)
{
u32_t *stack;
if (_current->base.thread_state == _THREAD_DUMMY) {
return;
}
stack = (u32_t *)_current->stack_info.start;
if (*stack != STACK_SENTINEL) {
/* Restore it so further checks don't trigger this same error */
*stack = STACK_SENTINEL;
_k_except_reason(_NANO_ERR_STACK_CHK_FAIL);
}
}
#endif
/*
* Common thread entry point function (used by all threads)
*
* This routine invokes the actual thread entry point function and passes
* it three arguments. It also handles graceful termination of the thread
* if the entry point function ever returns.
*
* This routine does not return, and is marked as such so the compiler won't
* generate preamble code that is only used by functions that actually return.
*/
FUNC_NORETURN void _thread_entry(k_thread_entry_t entry,
void *p1, void *p2, void *p3)
{
entry(p1, p2, p3);
#ifdef CONFIG_MULTITHREADING
k_thread_abort(k_current_get());
#else
for (;;) {
k_cpu_idle();
}
#endif
/*
* Compiler can't tell that k_thread_abort() won't return and issues a
* warning unless we tell it that control never gets this far.
*/
CODE_UNREACHABLE;
}
#ifdef CONFIG_MULTITHREADING
void _impl_k_thread_start(struct k_thread *thread)
{
int key = irq_lock(); /* protect kernel queues */
if (_has_thread_started(thread)) {
irq_unlock(key);
return;
}
_mark_thread_as_started(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
if (_must_switch_threads()) {
_Swap(key);
return;
}
}
irq_unlock(key);
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_start, K_OBJ_THREAD, struct k_thread *);
#endif
#endif
#ifdef CONFIG_MULTITHREADING
static void schedule_new_thread(struct k_thread *thread, s32_t delay)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (delay == 0) {
k_thread_start(thread);
} else {
s32_t ticks = _TICK_ALIGN + _ms_to_ticks(delay);
int key = irq_lock();
_add_thread_timeout(thread, NULL, ticks);
irq_unlock(key);
}
#else
ARG_UNUSED(delay);
k_thread_start(thread);
#endif
}
#endif
void _setup_new_thread(struct k_thread *new_thread,
k_thread_stack_t *stack, size_t stack_size,
k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, u32_t options)
{
_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
prio, options);
#ifdef CONFIG_USERSPACE
new_thread->base.perm_index = get_next_thread_index();
_k_object_init(new_thread);
_k_object_init(stack);
new_thread->stack_obj = stack;
/* Any given thread has access to itself */
k_object_access_grant(new_thread, new_thread);
if (options & K_INHERIT_PERMS) {
_thread_perms_inherit(_current, new_thread);
}
#endif
}
#ifdef CONFIG_MULTITHREADING
k_tid_t _impl_k_thread_create(struct k_thread *new_thread,
k_thread_stack_t *stack,
size_t stack_size, k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, u32_t options, s32_t delay)
{
__ASSERT(!_is_in_isr(), "Threads may not be created in ISRs");
_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
prio, options);
if (delay != K_FOREVER) {
schedule_new_thread(new_thread, delay);
}
return new_thread;
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER(k_thread_create,
new_thread_p, stack_p, stack_size, entry, p1, more_args)
{
int prio;
u32_t options, delay, guard_size, total_size;
struct _k_object *stack_object;
struct k_thread *new_thread = (struct k_thread *)new_thread_p;
volatile struct _syscall_10_args *margs =
(volatile struct _syscall_10_args *)more_args;
k_thread_stack_t *stack = (k_thread_stack_t *)stack_p;
/* The thread and stack objects *must* be in an uninitialized state */
_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD);
stack_object = _k_object_find(stack);
_SYSCALL_VERIFY_MSG(!_obj_validation_check(stack_object, stack,
K_OBJ__THREAD_STACK_ELEMENT,
_OBJ_INIT_FALSE),
"bad stack object");
/* Verify that the stack size passed in is OK by computing the total
* size and comparing it with the size value in the object metadata
*/
guard_size = (u32_t)K_THREAD_STACK_BUFFER(stack) - (u32_t)stack;
_SYSCALL_VERIFY_MSG(!__builtin_uadd_overflow(guard_size, stack_size,
&total_size),
"stack size overflow (%u+%u)", stack_size,
guard_size);
/* They really ought to be equal, make this more strict? */
_SYSCALL_VERIFY_MSG(total_size <= stack_object->data,
"stack size %u is too big, max is %u",
total_size, stack_object->data);
/* Verify the struct containing args 6-10 */
_SYSCALL_MEMORY_READ(margs, sizeof(*margs));
/* Stash struct arguments in local variables to prevent switcheroo
* attacks
*/
prio = margs->arg8;
options = margs->arg9;
delay = margs->arg10;
compiler_barrier();
/* User threads may only create other user threads and they can't
* be marked as essential
*/
_SYSCALL_VERIFY(options & K_USER);
_SYSCALL_VERIFY(!(options & K_ESSENTIAL));
/* Check validity of prio argument; must be the same or worse priority
* than the caller
*/
_SYSCALL_VERIFY(_VALID_PRIO(prio, NULL));
_SYSCALL_VERIFY(_is_prio_lower_or_equal(prio, _current->base.prio));
_setup_new_thread((struct k_thread *)new_thread, stack, stack_size,
(k_thread_entry_t)entry, (void *)p1,
(void *)margs->arg6, (void *)margs->arg7, prio,
options);
if (new_thread->base.perm_index == -1) {
k_thread_abort(new_thread);
_SYSCALL_VERIFY_MSG(0, "too many threads created");
}
if (delay != K_FOREVER) {
schedule_new_thread(new_thread, delay);
}
return new_thread_p;
}
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_MULTITHREADING */
int _impl_k_thread_cancel(k_tid_t tid)
{
struct k_thread *thread = tid;
int key = irq_lock();
if (_has_thread_started(thread) ||
!_is_thread_timeout_active(thread)) {
irq_unlock(key);
return -EINVAL;
}
_abort_thread_timeout(thread);
_thread_monitor_exit(thread);
irq_unlock(key);
return 0;
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER1_SIMPLE(k_thread_cancel, K_OBJ_THREAD, struct k_thread *);
#endif
static inline int is_in_any_group(struct _static_thread_data *thread_data,
u32_t groups)
{
return !!(thread_data->init_groups & groups);
}
void _k_thread_group_op(u32_t groups, void (*func)(struct k_thread *))
{
unsigned int key;
__ASSERT(!_is_in_isr(), "");
_sched_lock();
/* Invoke func() on each static thread in the specified group set. */
_FOREACH_STATIC_THREAD(thread_data) {
if (is_in_any_group(thread_data, groups)) {
key = irq_lock();
func(thread_data->init_thread);
irq_unlock(key);
}
}
/*
* If the current thread is still in a ready state, then let the
* "unlock scheduler" code determine if any rescheduling is needed.
*/
if (_is_thread_ready(_current)) {
k_sched_unlock();
return;
}
/* The current thread is no longer in a ready state--reschedule. */
key = irq_lock();
_sched_unlock_no_reschedule();
_Swap(key);
}
void _k_thread_single_start(struct k_thread *thread)
{
_mark_thread_as_started(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
}
}
void _k_thread_single_suspend(struct k_thread *thread)
{
if (_is_thread_ready(thread)) {
_remove_thread_from_ready_q(thread);
}
_mark_thread_as_suspended(thread);
}
void _impl_k_thread_suspend(struct k_thread *thread)
{
unsigned int key = irq_lock();
_k_thread_single_suspend(thread);
if (thread == _current) {
_Swap(key);
} else {
irq_unlock(key);
}
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_suspend, K_OBJ_THREAD, k_tid_t);
#endif
void _k_thread_single_resume(struct k_thread *thread)
{
_mark_thread_as_not_suspended(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
}
}
void _impl_k_thread_resume(struct k_thread *thread)
{
unsigned int key = irq_lock();
_k_thread_single_resume(thread);
_reschedule_threads(key);
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_resume, K_OBJ_THREAD, k_tid_t);
#endif
void _k_thread_single_abort(struct k_thread *thread)
{
if (thread->fn_abort != NULL) {
thread->fn_abort();
}
if (_is_thread_ready(thread)) {
_remove_thread_from_ready_q(thread);
} else {
if (_is_thread_pending(thread)) {
_unpend_thread(thread);
}
if (_is_thread_timeout_active(thread)) {
_abort_thread_timeout(thread);
}
}
thread->base.thread_state |= _THREAD_DEAD;
#ifdef CONFIG_KERNEL_EVENT_LOGGER_THREAD
_sys_k_event_logger_thread_exit(thread);
#endif
#ifdef CONFIG_USERSPACE
/* Clear initailized state so that this thread object may be re-used
* and triggers errors if API calls are made on it from user threads
*/
_k_object_uninit(thread->stack_obj);
_k_object_uninit(thread);
if (thread->base.perm_index != -1) {
free_thread_index(thread->base.perm_index);
/* Revoke permissions on thread's ID so that it may be recycled */
_thread_perms_all_clear(thread);
}
#endif
}
#ifdef CONFIG_MULTITHREADING
#ifdef CONFIG_USERSPACE
extern char __object_access_start[];
extern char __object_access_end[];
static void grant_static_access(void)
{
struct _k_object_assignment *pos;
for (pos = (struct _k_object_assignment *)__object_access_start;
pos < (struct _k_object_assignment *)__object_access_end;
pos++) {
for (int i = 0; pos->objects[i] != NULL; i++) {
k_object_access_grant(pos->objects[i],
pos->thread);
}
}
}
#endif /* CONFIG_USERSPACE */
void _init_static_threads(void)
{
unsigned int key;
_FOREACH_STATIC_THREAD(thread_data) {
_setup_new_thread(
thread_data->init_thread,
thread_data->init_stack,
thread_data->init_stack_size,
thread_data->init_entry,
thread_data->init_p1,
thread_data->init_p2,
thread_data->init_p3,
thread_data->init_prio,
thread_data->init_options);
thread_data->init_thread->init_data = thread_data;
}
#ifdef CONFIG_USERSPACE
grant_static_access();
#endif
_sched_lock();
/*
* Non-legacy static threads may be started immediately or after a
* previously specified delay. Even though the scheduler is locked,
* ticks can still be delivered and processed. Lock interrupts so
* that the countdown until execution begins from the same tick.
*
* Note that static threads defined using the legacy API have a
* delay of K_FOREVER.
*/
key = irq_lock();
_FOREACH_STATIC_THREAD(thread_data) {
if (thread_data->init_delay != K_FOREVER) {
schedule_new_thread(thread_data->init_thread,
thread_data->init_delay);
}
}
irq_unlock(key);
k_sched_unlock();
}
#endif
void _init_thread_base(struct _thread_base *thread_base, int priority,
u32_t initial_state, unsigned int options)
{
/* k_q_node is initialized upon first insertion in a list */
thread_base->user_options = (u8_t)options;
thread_base->thread_state = (u8_t)initial_state;
thread_base->prio = priority;
thread_base->sched_locked = 0;
/* swap_data does not need to be initialized */
_init_thread_timeout(thread_base);
}
u32_t _k_thread_group_mask_get(struct k_thread *thread)
{
struct _static_thread_data *thread_data = thread->init_data;
return thread_data->init_groups;
}
void _k_thread_group_join(u32_t groups, struct k_thread *thread)
{
struct _static_thread_data *thread_data = thread->init_data;
thread_data->init_groups |= groups;
}
void _k_thread_group_leave(u32_t groups, struct k_thread *thread)
{
struct _static_thread_data *thread_data = thread->init_data;
thread_data->init_groups &= ~groups;
}
void k_thread_access_grant(struct k_thread *thread, ...)
{
#ifdef CONFIG_USERSPACE
va_list args;
va_start(args, thread);
while (1) {
void *object = va_arg(args, void *);
if (object == NULL) {
break;
}
k_object_access_grant(object, thread);
}
va_end(args);
#else
ARG_UNUSED(thread);
#endif
}
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
void *p1, void *p2, void *p3)
{
_current->base.user_options |= K_USER;
_thread_essential_clear();
#ifdef CONFIG_USERSPACE
_arch_user_mode_enter(entry, p1, p2, p3);
#else
/* XXX In this case we do not reset the stack */
_thread_entry(entry, p1, p2, p3);
#endif
}