blob: b6ffdca36e0597fede82ab59524a10eb31a74119 [file] [log] [blame]
/*
* Copyright (c) 2017 Piotr Mienkowski
* Copyright (c) 2020 Gerson Fernando Budke <nandojve@gmail.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT atmel_sam_i2c_twim
/** @file
* @brief I2C bus (TWIM) driver for Atmel SAM4L MCU family.
*
* I2C Master Mode with 7/10 bit addressing is currently supported.
* Very long transfers are allowed using NCMDR register. DMA is not
* yet supported.
*/
#include <errno.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/pinctrl.h>
#define LOG_LEVEL CONFIG_I2C_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(i2c_sam_twim);
#include "i2c-priv.h"
/** I2C bus speed [Hz] in Standard Mode */
#define BUS_SPEED_STANDARD_HZ 100000U
/** I2C bus speed [Hz] in Fast Mode */
#define BUS_SPEED_FAST_HZ 400000U
/** I2C bus speed [Hz] in Fast Plus Mode */
#define BUS_SPEED_PLUS_HZ 1000000U
/** I2C bus speed [Hz] in High Speed Mode */
#define BUS_SPEED_HIGH_HZ 3400000U
/* Maximum value of Clock Divider (CKDIV) */
#define CKDIV_MAX 7
/* Maximum Frequency prescaled */
#define F_PRESCALED_MAX 255
/** Status Clear Register Mask for No Acknowledgements */
#define TWIM_SCR_NAK_MASK (TWIM_SCR_ANAK | TWIM_SCR_DNAK)
/** Status Register Mask for No Acknowledgements */
#define TWIM_SR_NAK_MASK (TWIM_SR_ANAK | TWIM_SR_DNAK)
/** Interrupt Enable Register Mask for No Acknowledgements */
#define TWIM_IER_NAK_MASK (TWIM_IER_ANAK | TWIM_IER_DNAK)
/** Frequently used Interrupt Enable Register Mask */
#define TWIM_IER_STD_MASK (TWIM_IER_ANAK | TWIM_IER_ARBLST)
/** Frequently used Status Clear Register Mask */
#define TWIM_SR_STD_MASK (TWIM_SR_ANAK | TWIM_SR_ARBLST)
/** \internal Max value of NBYTES per transfer by hardware */
#define TWIM_MAX_NBYTES_PER_XFER \
(TWIM_CMDR_NBYTES_Msk >> TWIM_CMDR_NBYTES_Pos)
#define TWIM_NCMDR_FREE_WAIT 2000
/* Device constant configuration parameters */
struct i2c_sam_twim_dev_cfg {
Twim *regs;
void (*irq_config)(void);
uint32_t bitrate;
const struct pinctrl_dev_config *pcfg;
uint8_t periph_id;
uint8_t irq_id;
uint8_t std_clk_slew_lim;
uint8_t std_clk_strength_low;
uint8_t std_data_slew_lim;
uint8_t std_data_strength_low;
uint8_t hs_clk_slew_lim;
uint8_t hs_clk_strength_high;
uint8_t hs_clk_strength_low;
uint8_t hs_data_slew_lim;
uint8_t hs_data_strength_low;
uint8_t hs_master_code;
};
/* Device run time data */
struct i2c_sam_twim_dev_data {
struct k_mutex bus_mutex;
struct k_sem sem;
struct i2c_msg *msgs;
uint32_t msg_cur_idx;
uint32_t msg_next_idx;
uint32_t msg_max_idx;
uint32_t cur_remaining;
uint32_t cur_idx;
uint32_t cur_sr;
uint32_t next_nb_bytes;
bool next_is_valid;
bool next_need_rs;
bool cur_need_rs;
};
static int i2c_clk_set(const struct device *dev, uint32_t speed)
{
const struct i2c_sam_twim_dev_cfg *const cfg = dev->config;
Twim *const twim = cfg->regs;
uint32_t per_clk = SOC_ATMEL_SAM_MCK_FREQ_HZ;
uint32_t f_prescaled = (per_clk / speed / 2);
uint32_t cwgr_reg_val = 0;
uint8_t cwgr_exp = 0;
/* f_prescaled must fit in 8 bits, cwgr_exp must fit in 3 bits */
while ((f_prescaled > F_PRESCALED_MAX) && (cwgr_exp <= CKDIV_MAX)) {
/* increase clock divider */
cwgr_exp++;
/* divide f_prescaled value */
f_prescaled /= 2;
}
if (cwgr_exp > CKDIV_MAX) {
LOG_ERR("Failed to configure I2C clock");
return -EIO;
}
cwgr_reg_val = TWIM_HSCWGR_LOW(f_prescaled / 2) |
TWIM_HSCWGR_HIGH(f_prescaled -
(f_prescaled / 2)) |
TWIM_HSCWGR_EXP(cwgr_exp) |
TWIM_HSCWGR_DATA(0) |
TWIM_HSCWGR_STASTO(f_prescaled);
/* This configuration should be applied after a TWIM_CR_SWRST
* Set clock waveform generator register
*/
if (speed == BUS_SPEED_HIGH_HZ) {
twim->HSCWGR = cwgr_reg_val;
} else {
twim->CWGR = cwgr_reg_val;
}
LOG_DBG("per_clk: %d, f_prescaled: %d, cwgr_exp: 0x%02x,"
"cwgr_reg_val: 0x%08x", per_clk, f_prescaled,
cwgr_exp, cwgr_reg_val);
/* Set clock and data slew rate */
twim->SRR = ((speed == BUS_SPEED_PLUS_HZ) ? TWIM_SRR_FILTER(2) :
TWIM_SRR_FILTER(3)) |
TWIM_SRR_CLSLEW(cfg->std_clk_slew_lim) |
TWIM_SRR_CLDRIVEL(cfg->std_clk_strength_low) |
TWIM_SRR_DASLEW(cfg->std_data_slew_lim) |
TWIM_SRR_DADRIVEL(cfg->std_data_strength_low);
twim->HSSRR = TWIM_HSSRR_FILTER(1) |
TWIM_HSSRR_CLSLEW(cfg->hs_clk_slew_lim) |
TWIM_HSSRR_CLDRIVEH(cfg->hs_clk_strength_high) |
TWIM_HSSRR_CLDRIVEL(cfg->hs_clk_strength_low) |
TWIM_HSSRR_DASLEW(cfg->hs_data_slew_lim) |
TWIM_HSSRR_DADRIVEL(cfg->hs_data_strength_low);
return 0;
}
static int i2c_sam_twim_configure(const struct device *dev, uint32_t config)
{
uint32_t bitrate;
int ret;
if (!(config & I2C_MODE_MASTER)) {
LOG_ERR("Master Mode is not enabled");
return -EIO;
}
if (config & I2C_ADDR_10_BITS) {
LOG_ERR("I2C 10-bit addressing is currently not supported");
LOG_ERR("Please submit a patch");
return -EIO;
}
/* Configure clock */
switch (I2C_SPEED_GET(config)) {
case I2C_SPEED_STANDARD:
bitrate = BUS_SPEED_STANDARD_HZ;
break;
case I2C_SPEED_FAST:
bitrate = BUS_SPEED_FAST_HZ;
break;
case I2C_SPEED_FAST_PLUS:
bitrate = BUS_SPEED_PLUS_HZ;
break;
case I2C_SPEED_HIGH:
bitrate = BUS_SPEED_HIGH_HZ;
break;
default:
LOG_ERR("Unsupported I2C speed value");
return -EIO;
}
/* Setup clock waveform */
ret = i2c_clk_set(dev, bitrate);
if (ret < 0) {
return ret;
}
return 0;
}
static void i2c_prepare_xfer_data(struct i2c_sam_twim_dev_data *data)
{
struct i2c_msg *next_msg = NULL;
if (data->next_nb_bytes > TWIM_MAX_NBYTES_PER_XFER) {
data->cur_remaining = TWIM_MAX_NBYTES_PER_XFER;
data->next_nb_bytes -= TWIM_MAX_NBYTES_PER_XFER;
data->next_is_valid = true;
data->next_need_rs = false;
} else {
data->cur_remaining = data->next_nb_bytes;
if ((data->msg_next_idx + 1) < data->msg_max_idx) {
next_msg = &data->msgs[++data->msg_next_idx];
data->next_nb_bytes = next_msg->len;
data->next_is_valid = true;
data->next_need_rs = true;
} else {
data->next_nb_bytes = 0;
data->next_is_valid = false;
data->next_need_rs = false;
}
}
}
static uint32_t i2c_prepare_xfer_cmd(struct i2c_sam_twim_dev_data *data,
uint32_t *cmdr_reg,
uint32_t next_msg_idx)
{
struct i2c_msg *next_msg = &data->msgs[next_msg_idx];
bool next_msg_is_read;
uint32_t next_nb_remaining;
*cmdr_reg &= ~(TWIM_CMDR_NBYTES_Msk |
TWIM_CMDR_ACKLAST |
TWIM_CMDR_START |
TWIM_CMDR_READ);
next_msg_is_read = ((next_msg->flags & I2C_MSG_RW_MASK) ==
I2C_MSG_READ);
if (next_msg_is_read) {
*cmdr_reg |= TWIM_CMDR_READ;
}
if (data->next_need_rs) {
/* TODO: evaluate 10 bits repeat start read
* because of blank cmd
*/
*cmdr_reg |= TWIM_CMDR_START;
}
if (data->next_nb_bytes > TWIM_MAX_NBYTES_PER_XFER) {
next_nb_remaining = TWIM_MAX_NBYTES_PER_XFER;
if (next_msg_is_read) {
*cmdr_reg |= TWIM_CMDR_ACKLAST;
}
} else {
next_nb_remaining = data->next_nb_bytes;
/* Is there any more messages ? */
if ((next_msg_idx + 1) >= data->msg_max_idx) {
*cmdr_reg |= TWIM_CMDR_STOP;
}
}
return next_nb_remaining;
}
static void i2c_start_xfer(const struct device *dev, uint16_t daddr)
{
const struct i2c_sam_twim_dev_cfg *const cfg = dev->config;
struct i2c_sam_twim_dev_data *data = dev->data;
struct i2c_msg *msg = &data->msgs[0];
Twim *const twim = cfg->regs;
uint32_t cmdr_reg;
uint32_t data_size;
uint32_t cur_is_read;
/* Reset the TWIM module */
twim->CR = TWIM_CR_MEN;
twim->CR = TWIM_CR_SWRST;
twim->CR = TWIM_CR_MDIS;
twim->IDR = ~0UL; /* Clear the interrupt flags */
twim->SCR = ~0UL; /* Clear the status flags */
/* Reset indexes */
data->msg_cur_idx = 0;
data->msg_next_idx = 0;
/* pre-load current message to infer next */
data->next_nb_bytes = data->msgs[data->msg_next_idx].len;
data->next_is_valid = false;
data->next_need_rs = false;
data->cur_remaining = 0;
data->cur_idx = 0;
LOG_DBG("Config first/next Transfer: msgs: %d", data->msg_max_idx);
cmdr_reg = TWIM_CMDR_SADR(daddr) |
TWIM_CMDR_VALID;
if (I2C_SPEED_GET(msg->flags) >= I2C_SPEED_HIGH) {
cmdr_reg |= TWIM_CMDR_HS |
TWIM_CMDR_HSMCODE(cfg->hs_master_code);
}
if (msg->flags & I2C_MSG_ADDR_10_BITS) {
cmdr_reg |= TWIM_CMDR_TENBIT;
}
if ((msg->flags & I2C_MSG_RW_MASK) == I2C_MSG_READ &&
(msg->flags & I2C_MSG_ADDR_10_BITS)) {
/* Fill transfer command (empty)
* It must be a write xfer with NBYTES = 0
*/
twim->CMDR = cmdr_reg | TWIM_CMDR_START;
/* Fill next transfer command. REPSAME performs a repeated
* start to the same slave address as addressed in the
* previous transfer in order to enter master receiver mode.
*/
cmdr_reg |= TWIM_CMDR_REPSAME;
i2c_prepare_xfer_data(data);
/* Special condition: reset msg_next_idx */
data->msg_next_idx = 0;
data_size = i2c_prepare_xfer_cmd(data, &cmdr_reg, 0);
cmdr_reg |= TWIM_CMDR_NBYTES(data->cur_remaining);
twim->NCMDR = cmdr_reg | TWIM_CMDR_START;
} else {
/* Fill transfer command */
i2c_prepare_xfer_data(data);
data_size = i2c_prepare_xfer_cmd(data, &cmdr_reg, 0);
cmdr_reg |= TWIM_CMDR_NBYTES(data->cur_remaining);
twim->CMDR = cmdr_reg | TWIM_CMDR_START;
/* Fill next transfer command */
if (data->next_is_valid) {
data_size = i2c_prepare_xfer_cmd(data, &cmdr_reg,
data->msg_next_idx);
cmdr_reg |= TWIM_CMDR_NBYTES(data_size);
twim->NCMDR = cmdr_reg;
}
}
LOG_DBG("Start Transfer: CMDR: 0x%08x, NCMDR: 0x%08x",
twim->CMDR, twim->NCMDR);
/* Extract Read/Write start operation */
cmdr_reg = twim->CMDR;
cur_is_read = (cmdr_reg & TWIM_CMDR_READ);
/* Enable master transfer */
twim->CR = TWIM_CR_MEN;
twim->IER = TWIM_IER_STD_MASK |
(cur_is_read ? TWIM_IER_RXRDY : TWIM_IER_TXRDY) |
TWIM_IER_IDLE;
}
static void i2c_prepare_next(struct i2c_sam_twim_dev_data *data,
Twim *const twim)
{
struct i2c_msg *msg = &data->msgs[data->msg_cur_idx];
volatile uint32_t ncmdr_wait;
uint32_t cmdr_reg;
uint32_t data_size;
uint32_t cur_is_read;
if (data->cur_idx == msg->len) {
data->cur_idx = 0;
data->msg_cur_idx++;
}
i2c_prepare_xfer_data(data);
/* Sync CMDR with NCMDR before apply changes */
ncmdr_wait = TWIM_NCMDR_FREE_WAIT;
while ((twim->NCMDR & TWIM_NCMDR_VALID) && (ncmdr_wait--)) {
;
}
cmdr_reg = twim->CMDR;
cur_is_read = (cmdr_reg & TWIM_CMDR_READ);
twim->IER |= (cur_is_read ? TWIM_IER_RXRDY : TWIM_IER_TXRDY);
/* Is there any more transfer? */
if (data->next_nb_bytes == 0) {
return;
}
data_size = i2c_prepare_xfer_cmd(data, &cmdr_reg, data->msg_next_idx);
cmdr_reg |= TWIM_CMDR_NBYTES(data_size);
twim->NCMDR = cmdr_reg;
LOG_DBG("ld xfer: NCMDR: 0x%08x", twim->NCMDR);
}
static void i2c_sam_twim_isr(const struct device *dev)
{
const struct i2c_sam_twim_dev_cfg *const cfg = dev->config;
struct i2c_sam_twim_dev_data *const data = dev->data;
Twim *const twim = cfg->regs;
struct i2c_msg *msg = &data->msgs[data->msg_cur_idx];
uint32_t isr_status;
/* Retrieve interrupt status */
isr_status = twim->SR & twim->IMR;
LOG_DBG("ISR: IMR: 0x%08x", isr_status);
/* Not Acknowledged */
if (isr_status & TWIM_SR_STD_MASK) {
/*
* If we get a NACK, clear the valid bit in CMDR,
* otherwise the command will be re-sent.
*/
twim->NCMDR &= ~TWIM_NCMDR_VALID;
twim->CMDR &= ~TWIM_CMDR_VALID;
data->cur_sr = isr_status;
goto xfer_comp;
}
data->cur_sr = 0;
/* Byte received */
if (isr_status & TWIM_SR_RXRDY) {
msg->buf[data->cur_idx++] = twim->RHR;
data->cur_remaining--;
if (data->cur_remaining > 0) {
goto check_xfer;
}
twim->IDR = TWIM_IDR_RXRDY;
/* Check for next transfer */
if (data->next_is_valid && data->next_nb_bytes > 0) {
i2c_prepare_next(data, twim);
} else {
data->next_nb_bytes = 0;
}
}
/* Byte sent */
if (isr_status & TWIM_SR_TXRDY) {
if (data->cur_idx < msg->len) {
twim->THR = msg->buf[data->cur_idx++];
data->cur_remaining--;
goto check_xfer;
}
twim->IDR = TWIM_IDR_TXRDY;
/* Check for next transfer */
if (data->next_is_valid && data->next_nb_bytes > 0) {
i2c_prepare_next(data, twim);
}
}
check_xfer:
/* Is transaction finished ? */
if (!(isr_status & TWIM_SR_IDLE)) {
return;
}
LOG_DBG("ISR: TWIM_SR_IDLE");
xfer_comp:
/* Disable all enabled interrupts */
twim->IDR = ~0UL;
/* Clear all status */
twim->SCR = ~0UL;
/* We are done */
k_sem_give(&data->sem);
}
static int i2c_sam_twim_transfer(const struct device *dev,
struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr)
{
struct i2c_sam_twim_dev_data *data = dev->data;
int ret = 0;
/* Send out messages */
k_mutex_lock(&data->bus_mutex, K_FOREVER);
/* Load messages */
data->msgs = msgs;
data->msg_max_idx = num_msgs;
i2c_start_xfer(dev, addr);
/* Wait for the message transfer to complete */
k_sem_take(&data->sem, K_FOREVER);
if (data->cur_sr & TWIM_SR_STD_MASK) {
ret = -EIO;
LOG_INF("MSG: %d, ANAK: %d, ARBLST: %d",
data->msg_cur_idx,
(data->cur_sr & TWIM_SR_ANAK) > 0,
(data->cur_sr & TWIM_SR_ARBLST) > 0);
}
k_mutex_unlock(&data->bus_mutex);
return ret;
}
static int i2c_sam_twim_initialize(const struct device *dev)
{
const struct i2c_sam_twim_dev_cfg *const cfg = dev->config;
struct i2c_sam_twim_dev_data *data = dev->data;
Twim *const twim = cfg->regs;
uint32_t bitrate_cfg;
int ret;
/* Configure interrupts */
cfg->irq_config();
/*
* initialize mutex. it is used when multiple transfers are taking
* place to guarantee that each one is atomic and has exclusive access
* to the I2C bus.
*/
k_mutex_init(&data->bus_mutex);
/* Initialize semaphore */
k_sem_init(&data->sem, 0, 1);
/* Connect pins to the peripheral */
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
/* Enable module's clock */
soc_pmc_peripheral_enable(cfg->periph_id);
/* Enable the module*/
twim->CR = TWIM_CR_MEN;
/* Reset the module */
twim->CR |= TWIM_CR_SWRST;
/* Clear SR */
twim->SCR = ~0UL;
bitrate_cfg = i2c_map_dt_bitrate(cfg->bitrate);
ret = i2c_sam_twim_configure(dev, I2C_MODE_MASTER | bitrate_cfg);
if (ret < 0) {
LOG_ERR("Failed to initialize %s device", dev->name);
return ret;
}
/* Enable module's IRQ */
irq_enable(cfg->irq_id);
LOG_INF("Device %s initialized", dev->name);
return 0;
}
static const struct i2c_driver_api i2c_sam_twim_driver_api = {
.configure = i2c_sam_twim_configure,
.transfer = i2c_sam_twim_transfer,
};
#define I2C_TWIM_SAM_SLEW_REGS(n) \
.std_clk_slew_lim = DT_INST_ENUM_IDX(n, std_clk_slew_lim), \
.std_clk_strength_low = DT_INST_ENUM_IDX(n, std_clk_strength_low),\
.std_data_slew_lim = DT_INST_ENUM_IDX(n, std_data_slew_lim), \
.std_data_strength_low = DT_INST_ENUM_IDX(n, std_data_strength_low),\
.hs_clk_slew_lim = DT_INST_ENUM_IDX(n, hs_clk_slew_lim), \
.hs_clk_strength_high = DT_INST_ENUM_IDX(n, hs_clk_strength_high),\
.hs_clk_strength_low = DT_INST_ENUM_IDX(n, hs_clk_strength_low),\
.hs_data_slew_lim = DT_INST_ENUM_IDX(n, hs_data_slew_lim), \
.hs_data_strength_low = DT_INST_ENUM_IDX(n, hs_data_strength_low)
#define I2C_TWIM_SAM_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
static void i2c##n##_sam_irq_config(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
i2c_sam_twim_isr, \
DEVICE_DT_INST_GET(n), 0); \
} \
\
static const struct i2c_sam_twim_dev_cfg i2c##n##_sam_config = {\
.regs = (Twim *)DT_INST_REG_ADDR(n), \
.irq_config = i2c##n##_sam_irq_config, \
.periph_id = DT_INST_PROP(n, peripheral_id), \
.irq_id = DT_INST_IRQN(n), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.bitrate = DT_INST_PROP(n, clock_frequency), \
.hs_master_code = DT_INST_ENUM_IDX(n, hs_master_code), \
I2C_TWIM_SAM_SLEW_REGS(n), \
}; \
\
static struct i2c_sam_twim_dev_data i2c##n##_sam_data; \
\
I2C_DEVICE_DT_INST_DEFINE(n, i2c_sam_twim_initialize, \
NULL, \
&i2c##n##_sam_data, &i2c##n##_sam_config, \
POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \
&i2c_sam_twim_driver_api)
DT_INST_FOREACH_STATUS_OKAY(I2C_TWIM_SAM_INIT);