blob: 4a006c73711f3b7406cc2b2f0db1036663d2545e [file] [log] [blame]
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_lis2dh
#include <zephyr/init.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/logging/log.h>
#include <zephyr/pm/device.h>
LOG_MODULE_REGISTER(lis2dh, CONFIG_SENSOR_LOG_LEVEL);
#include "lis2dh.h"
#define ACCEL_SCALE(sensitivity) \
((SENSOR_G * (sensitivity) >> 14) / 100)
/*
* Use values for low-power mode in DS "Mechanical (Sensor) characteristics",
* multiplied by 100.
*/
static uint32_t lis2dh_reg_val_to_scale[] = {
ACCEL_SCALE(1600),
ACCEL_SCALE(3200),
ACCEL_SCALE(6400),
ACCEL_SCALE(19200),
};
static void lis2dh_convert(int16_t raw_val, uint32_t scale,
struct sensor_value *val)
{
int32_t converted_val;
/*
* maximum converted value we can get is: max(raw_val) * max(scale)
* max(raw_val >> 4) = +/- 2^11
* max(scale) = 114921
* max(converted_val) = 235358208 which is less than 2^31
*/
converted_val = (raw_val >> 4) * scale;
val->val1 = converted_val / 1000000;
val->val2 = converted_val % 1000000;
}
static int lis2dh_sample_fetch_temp(const struct device *dev)
{
int ret = -ENOTSUP;
#ifdef CONFIG_LIS2DH_MEASURE_TEMPERATURE
struct lis2dh_data *lis2dh = dev->data;
const struct lis2dh_config *cfg = dev->config;
uint8_t raw[sizeof(uint16_t)];
ret = lis2dh->hw_tf->read_data(dev, cfg->temperature.dout_addr, raw,
sizeof(raw));
if (ret < 0) {
LOG_WRN("Failed to fetch raw temperature sample");
ret = -EIO;
} else {
/*
* The result contains a delta value for the
* temperature that must be added to the reference temperature set
* for your board to return an absolute temperature in Celsius.
*
* The data is left aligned. Fixed point after first 8 bits.
*/
lis2dh->temperature.val1 = (int32_t)((int8_t)raw[1]);
if (cfg->temperature.fractional_bits == 0) {
lis2dh->temperature.val2 = 0;
} else {
lis2dh->temperature.val2 =
(raw[0] >> (8 - cfg->temperature.fractional_bits));
lis2dh->temperature.val2 = (lis2dh->temperature.val2 * 1000000);
lis2dh->temperature.val2 >>= cfg->temperature.fractional_bits;
if (lis2dh->temperature.val1 < 0) {
lis2dh->temperature.val2 *= -1;
}
}
}
#else
LOG_WRN("Temperature measurement disabled");
#endif
return ret;
}
static int lis2dh_channel_get(const struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct lis2dh_data *lis2dh = dev->data;
int ofs_start;
int ofs_end;
int i;
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
ofs_start = ofs_end = 0;
break;
case SENSOR_CHAN_ACCEL_Y:
ofs_start = ofs_end = 1;
break;
case SENSOR_CHAN_ACCEL_Z:
ofs_start = ofs_end = 2;
break;
case SENSOR_CHAN_ACCEL_XYZ:
ofs_start = 0;
ofs_end = 2;
break;
#ifdef CONFIG_LIS2DH_MEASURE_TEMPERATURE
case SENSOR_CHAN_DIE_TEMP:
memcpy(val, &lis2dh->temperature, sizeof(*val));
return 0;
#endif
default:
return -ENOTSUP;
}
for (i = ofs_start; i <= ofs_end; i++, val++) {
lis2dh_convert(lis2dh->sample.xyz[i], lis2dh->scale, val);
}
return 0;
}
static int lis2dh_fetch_xyz(const struct device *dev,
enum sensor_channel chan)
{
struct lis2dh_data *lis2dh = dev->data;
int status = -ENODATA;
size_t i;
/*
* since status and all accel data register addresses are consecutive,
* a burst read can be used to read all the samples
*/
status = lis2dh->hw_tf->read_data(dev, LIS2DH_REG_STATUS,
lis2dh->sample.raw,
sizeof(lis2dh->sample.raw));
if (status < 0) {
LOG_WRN("Could not read accel axis data");
return status;
}
for (i = 0; i < (3 * sizeof(int16_t)); i += sizeof(int16_t)) {
int16_t *sample =
(int16_t *)&lis2dh->sample.raw[1 + i];
*sample = sys_le16_to_cpu(*sample);
}
if (lis2dh->sample.status & LIS2DH_STATUS_DRDY_MASK) {
status = 0;
}
return status;
}
static int lis2dh_sample_fetch(const struct device *dev,
enum sensor_channel chan)
{
int status = -ENODATA;
if (chan == SENSOR_CHAN_ALL) {
status = lis2dh_fetch_xyz(dev, chan);
#ifdef CONFIG_LIS2DH_MEASURE_TEMPERATURE
if (status == 0) {
status = lis2dh_sample_fetch_temp(dev);
}
#endif
} else if (chan == SENSOR_CHAN_ACCEL_XYZ) {
status = lis2dh_fetch_xyz(dev, chan);
} else if (chan == SENSOR_CHAN_DIE_TEMP) {
status = lis2dh_sample_fetch_temp(dev);
} else {
__ASSERT(false, "Invalid sensor channel in fetch");
}
return status;
}
#ifdef CONFIG_LIS2DH_ODR_RUNTIME
/* 1620 & 5376 are low power only */
static const uint16_t lis2dh_odr_map[] = {0, 1, 10, 25, 50, 100, 200, 400, 1620,
1344, 5376};
static int lis2dh_freq_to_odr_val(uint16_t freq)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lis2dh_odr_map); i++) {
if (freq == lis2dh_odr_map[i]) {
return i;
}
}
return -EINVAL;
}
static int lis2dh_acc_odr_set(const struct device *dev, uint16_t freq)
{
int odr;
int status;
uint8_t value;
struct lis2dh_data *data = dev->data;
odr = lis2dh_freq_to_odr_val(freq);
if (odr < 0) {
return odr;
}
status = data->hw_tf->read_reg(dev, LIS2DH_REG_CTRL1, &value);
if (status < 0) {
return status;
}
/* some odr values cannot be set in certain power modes */
if ((value & LIS2DH_LP_EN_BIT_MASK) == 0U && odr == LIS2DH_ODR_8) {
return -ENOTSUP;
}
/* adjust odr index for LP enabled mode, see table above */
if (((value & LIS2DH_LP_EN_BIT_MASK) == LIS2DH_LP_EN_BIT_MASK) &&
(odr == LIS2DH_ODR_9 + 1)) {
odr--;
}
return data->hw_tf->write_reg(dev, LIS2DH_REG_CTRL1,
(value & ~LIS2DH_ODR_MASK) |
LIS2DH_ODR_RATE(odr));
}
#endif
#ifdef CONFIG_LIS2DH_ACCEL_RANGE_RUNTIME
#define LIS2DH_RANGE_IDX_TO_VALUE(idx) (1 << ((idx) + 1))
#define LIS2DH_NUM_RANGES 4
static int lis2dh_range_to_reg_val(uint16_t range)
{
int i;
for (i = 0; i < LIS2DH_NUM_RANGES; i++) {
if (range == LIS2DH_RANGE_IDX_TO_VALUE(i)) {
return i;
}
}
return -EINVAL;
}
static int lis2dh_acc_range_set(const struct device *dev, int32_t range)
{
struct lis2dh_data *lis2dh = dev->data;
int fs;
fs = lis2dh_range_to_reg_val(range);
if (fs < 0) {
return fs;
}
lis2dh->scale = lis2dh_reg_val_to_scale[fs];
return lis2dh->hw_tf->update_reg(dev, LIS2DH_REG_CTRL4,
LIS2DH_FS_MASK,
(fs << LIS2DH_FS_SHIFT));
}
#endif
static int lis2dh_acc_config(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
#ifdef CONFIG_LIS2DH_ACCEL_RANGE_RUNTIME
case SENSOR_ATTR_FULL_SCALE:
return lis2dh_acc_range_set(dev, sensor_ms2_to_g(val));
#endif
#ifdef CONFIG_LIS2DH_ODR_RUNTIME
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lis2dh_acc_odr_set(dev, val->val1);
#endif
#if defined(CONFIG_LIS2DH_TRIGGER)
case SENSOR_ATTR_SLOPE_TH:
case SENSOR_ATTR_SLOPE_DUR:
return lis2dh_acc_slope_config(dev, attr, val);
#endif
default:
LOG_DBG("Accel attribute not supported.");
return -ENOTSUP;
}
return 0;
}
static int lis2dh_attr_set(const struct device *dev, enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
case SENSOR_CHAN_ACCEL_Y:
case SENSOR_CHAN_ACCEL_Z:
case SENSOR_CHAN_ACCEL_XYZ:
return lis2dh_acc_config(dev, chan, attr, val);
default:
LOG_WRN("attr_set() not supported on this channel.");
return -ENOTSUP;
}
return 0;
}
static const struct sensor_driver_api lis2dh_driver_api = {
.attr_set = lis2dh_attr_set,
#if CONFIG_LIS2DH_TRIGGER
.trigger_set = lis2dh_trigger_set,
#endif
.sample_fetch = lis2dh_sample_fetch,
.channel_get = lis2dh_channel_get,
};
int lis2dh_init(const struct device *dev)
{
struct lis2dh_data *lis2dh = dev->data;
const struct lis2dh_config *cfg = dev->config;
int status;
uint8_t id;
uint8_t raw[6];
lis2dh->bus = device_get_binding(cfg->bus_name);
if (!lis2dh->bus) {
LOG_ERR("master not found: %s", cfg->bus_name);
return -EINVAL;
}
cfg->bus_init(dev);
status = lis2dh->hw_tf->read_reg(dev, LIS2DH_REG_WAI, &id);
if (status < 0) {
LOG_ERR("Failed to read chip id.");
return status;
}
if (id != LIS2DH_CHIP_ID) {
LOG_ERR("Invalid chip ID: %02x\n", id);
return -EINVAL;
}
/* Fix LSM303AGR_ACCEL device scale values */
if (cfg->hw.is_lsm303agr_dev) {
lis2dh_reg_val_to_scale[0] = ACCEL_SCALE(1563);
lis2dh_reg_val_to_scale[1] = ACCEL_SCALE(3126);
lis2dh_reg_val_to_scale[2] = ACCEL_SCALE(6252);
lis2dh_reg_val_to_scale[3] = ACCEL_SCALE(18758);
}
if (cfg->hw.disc_pull_up) {
status = lis2dh->hw_tf->update_reg(dev, LIS2DH_REG_CTRL0,
LIS2DH_SDO_PU_DISC_MASK,
LIS2DH_SDO_PU_DISC_MASK);
if (status < 0) {
LOG_ERR("Failed to disconnect SDO/SA0 pull-up.");
return status;
}
}
/* Initialize control register ctrl1 to ctrl 6 to default boot values
* to avoid warm start/reset issues as the accelerometer has no reset
* pin. Register values are retained if power is not removed.
* Default values see LIS2DH documentation page 30, chapter 6.
*/
(void)memset(raw, 0, sizeof(raw));
raw[0] = LIS2DH_ACCEL_EN_BITS;
status = lis2dh->hw_tf->write_data(dev, LIS2DH_REG_CTRL1, raw,
sizeof(raw));
if (status < 0) {
LOG_ERR("Failed to reset ctrl registers.");
return status;
}
/* set full scale range and store it for later conversion */
lis2dh->scale = lis2dh_reg_val_to_scale[LIS2DH_FS_IDX];
#ifdef CONFIG_LIS2DH_BLOCK_DATA_UPDATE
status = lis2dh->hw_tf->write_reg(dev, LIS2DH_REG_CTRL4,
LIS2DH_FS_BITS | LIS2DH_HR_BIT | LIS2DH_CTRL4_BDU_BIT);
#else
status = lis2dh->hw_tf->write_reg(dev, LIS2DH_REG_CTRL4, LIS2DH_FS_BITS | LIS2DH_HR_BIT);
#endif
if (status < 0) {
LOG_ERR("Failed to set full scale ctrl register.");
return status;
}
#ifdef CONFIG_LIS2DH_MEASURE_TEMPERATURE
status = lis2dh->hw_tf->update_reg(dev, cfg->temperature.cfg_addr,
cfg->temperature.enable_mask,
cfg->temperature.enable_mask);
if (status < 0) {
LOG_ERR("Failed to enable temperature measurement");
return status;
}
#endif
#ifdef CONFIG_LIS2DH_TRIGGER
if (cfg->gpio_drdy.port != NULL || cfg->gpio_int.port != NULL) {
status = lis2dh_init_interrupt(dev);
if (status < 0) {
LOG_ERR("Failed to initialize interrupts.");
return status;
}
}
#endif
LOG_INF("bus=%s fs=%d, odr=0x%x lp_en=0x%x scale=%d",
cfg->bus_name, 1 << (LIS2DH_FS_IDX + 1),
LIS2DH_ODR_IDX, (uint8_t)LIS2DH_LP_EN_BIT, lis2dh->scale);
/* enable accel measurements and set power mode and data rate */
return lis2dh->hw_tf->write_reg(dev, LIS2DH_REG_CTRL1,
LIS2DH_ACCEL_EN_BITS | LIS2DH_LP_EN_BIT |
LIS2DH_ODR_BITS);
}
#ifdef CONFIG_PM_DEVICE
static int lis2dh_pm_action(const struct device *dev,
enum pm_device_action action)
{
int status;
struct lis2dh_data *lis2dh = dev->data;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
/* Resume previous mode. */
status = lis2dh->hw_tf->write_reg(dev, LIS2DH_REG_CTRL1,
lis2dh->reg_ctrl1_active_val);
if (status < 0) {
LOG_ERR("failed to write reg_crtl1");
return status;
}
break;
case PM_DEVICE_ACTION_SUSPEND:
/* Store current mode, suspend. */
status = lis2dh->hw_tf->read_reg(dev, LIS2DH_REG_CTRL1,
&lis2dh->reg_ctrl1_active_val);
if (status < 0) {
LOG_ERR("failed to read reg_crtl1");
return status;
}
status = lis2dh->hw_tf->write_reg(dev, LIS2DH_REG_CTRL1,
LIS2DH_SUSPEND);
if (status < 0) {
LOG_ERR("failed to write reg_crtl1");
return status;
}
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
#if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) == 0
#warning "LIS2DH driver enabled without any devices"
#endif
/*
* Device creation macro, shared by LIS2DH_DEFINE_SPI() and
* LIS2DH_DEFINE_I2C().
*/
#define LIS2DH_DEVICE_INIT(inst) \
PM_DEVICE_DT_INST_DEFINE(inst, lis2dh_pm_action); \
DEVICE_DT_INST_DEFINE(inst, \
lis2dh_init, \
PM_DEVICE_DT_INST_GET(inst), \
&lis2dh_data_##inst, \
&lis2dh_config_##inst, \
POST_KERNEL, \
CONFIG_SENSOR_INIT_PRIORITY, \
&lis2dh_driver_api);
#define IS_LSM303AGR_DEV(inst) \
DT_NODE_HAS_COMPAT(DT_DRV_INST(inst), st_lsm303agr_accel)
#define DISC_PULL_UP(inst) \
DT_INST_PROP(inst, disconnect_sdo_sa0_pull_up)
#define ANYM_ON_INT1(inst) \
DT_INST_PROP(inst, anym_on_int1)
#ifdef CONFIG_LIS2DH_TRIGGER
#define GPIO_DT_SPEC_INST_GET_BY_IDX_COND(id, prop, idx) \
COND_CODE_1(DT_INST_PROP_HAS_IDX(id, prop, idx), \
(GPIO_DT_SPEC_INST_GET_BY_IDX(id, prop, idx)), \
({.port = NULL, .pin = 0, .dt_flags = 0}))
#define LIS2DH_CFG_INT(inst) \
.gpio_drdy = \
COND_CODE_1(ANYM_ON_INT1(inst), \
({.port = NULL, .pin = 0, .dt_flags = 0}), \
(GPIO_DT_SPEC_INST_GET_BY_IDX_COND(inst, irq_gpios, 0))), \
.gpio_int = \
COND_CODE_1(ANYM_ON_INT1(inst), \
(GPIO_DT_SPEC_INST_GET_BY_IDX_COND(inst, irq_gpios, 0)), \
(GPIO_DT_SPEC_INST_GET_BY_IDX_COND(inst, irq_gpios, 1))),
#else
#define LIS2DH_CFG_INT(inst)
#endif /* CONFIG_LIS2DH_TRIGGER */
#ifdef CONFIG_LIS2DH_MEASURE_TEMPERATURE
/* The first 8 bits are the integer portion of the temperature.
* The result is left justified. The remainder of the bits are
* the fractional part.
*
* LIS2DH has 8 total bits.
* LIS2DH12/LIS3DH have 10 bits unless they are in lower power mode.
* compat(lis2dh) cannot be used here because it is the base part.
*/
#define FRACTIONAL_BITS(inst) \
(DT_NODE_HAS_COMPAT(DT_DRV_INST(inst), st_lis2dh12) || \
DT_NODE_HAS_COMPAT(DT_DRV_INST(inst), st_lis3dh)) ? \
(IS_ENABLED(CONFIG_LIS2DH_OPER_MODE_LOW_POWER) ? 0 : 2) : \
0
#define LIS2DH_CFG_TEMPERATURE(inst) \
.temperature = { .cfg_addr = 0x1F, \
.enable_mask = 0xC0, \
.dout_addr = 0x0C, \
.fractional_bits = FRACTIONAL_BITS(inst) },
#else
#define LIS2DH_CFG_TEMPERATURE(inst)
#endif /* CONFIG_LIS2DH_MEASURE_TEMPERATURE */
#define LIS2DH_CONFIG_SPI(inst) \
{ \
.bus_name = DT_INST_BUS_LABEL(inst), \
.bus_init = lis2dh_spi_init, \
.bus_cfg = { .spi = SPI_DT_SPEC_INST_GET(inst, \
SPI_WORD_SET(8) | \
SPI_OP_MODE_MASTER | \
SPI_MODE_CPOL | \
SPI_MODE_CPHA, \
0) }, \
.hw = { .is_lsm303agr_dev = IS_LSM303AGR_DEV(inst), \
.disc_pull_up = DISC_PULL_UP(inst), \
.anym_on_int1 = ANYM_ON_INT1(inst), }, \
LIS2DH_CFG_TEMPERATURE(inst) \
LIS2DH_CFG_INT(inst) \
}
#define LIS2DH_DEFINE_SPI(inst) \
static struct lis2dh_data lis2dh_data_##inst; \
static const struct lis2dh_config lis2dh_config_##inst = \
LIS2DH_CONFIG_SPI(inst); \
LIS2DH_DEVICE_INIT(inst)
/*
* Instantiation macros used when a device is on an I2C bus.
*/
#define LIS2DH_CONFIG_I2C(inst) \
{ \
.bus_name = DT_INST_BUS_LABEL(inst), \
.bus_init = lis2dh_i2c_init, \
.bus_cfg = { .i2c_slv_addr = DT_INST_REG_ADDR(inst), }, \
.hw = { .is_lsm303agr_dev = IS_LSM303AGR_DEV(inst), \
.disc_pull_up = DISC_PULL_UP(inst), \
.anym_on_int1 = ANYM_ON_INT1(inst), }, \
LIS2DH_CFG_TEMPERATURE(inst) \
LIS2DH_CFG_INT(inst) \
}
#define LIS2DH_DEFINE_I2C(inst) \
static struct lis2dh_data lis2dh_data_##inst; \
static const struct lis2dh_config lis2dh_config_##inst = \
LIS2DH_CONFIG_I2C(inst); \
LIS2DH_DEVICE_INIT(inst)
/*
* Main instantiation macro. Use of COND_CODE_1() selects the right
* bus-specific macro at preprocessor time.
*/
#define LIS2DH_DEFINE(inst) \
COND_CODE_1(DT_INST_ON_BUS(inst, spi), \
(LIS2DH_DEFINE_SPI(inst)), \
(LIS2DH_DEFINE_I2C(inst)))
DT_INST_FOREACH_STATUS_OKAY(LIS2DH_DEFINE)