| /* |
| * Copyright (c) 2016-2021 Nordic Semiconductor ASA |
| * Copyright (c) 2018 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/device.h> |
| #include <soc.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/drivers/clock_control/nrf_clock_control.h> |
| #include <zephyr/drivers/timer/system_timer.h> |
| #include <zephyr/drivers/timer/nrf_rtc_timer.h> |
| #include <zephyr/sys_clock.h> |
| #include <hal/nrf_rtc.h> |
| |
| #define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT |
| #define CHAN_COUNT (EXT_CHAN_COUNT + 1) |
| |
| #define RTC NRF_RTC1 |
| #define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC) |
| #define RTC_LABEL rtc1 |
| #define RTC_CH_COUNT RTC1_CC_NUM |
| |
| BUILD_ASSERT(CHAN_COUNT <= RTC_CH_COUNT, "Not enough compare channels"); |
| |
| #define COUNTER_BIT_WIDTH 24U |
| #define COUNTER_SPAN BIT(COUNTER_BIT_WIDTH) |
| #define COUNTER_MAX (COUNTER_SPAN - 1U) |
| #define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U) |
| #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \ |
| / CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
| #define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK) |
| #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK) |
| |
| #define OVERFLOW_RISK_RANGE_END (COUNTER_SPAN / 16) |
| #define ANCHOR_RANGE_START (COUNTER_SPAN / 8) |
| #define ANCHOR_RANGE_END (7 * COUNTER_SPAN / 8) |
| #define TARGET_TIME_INVALID (UINT64_MAX) |
| |
| static volatile uint32_t overflow_cnt; |
| static volatile uint64_t anchor; |
| static uint64_t last_count; |
| |
| struct z_nrf_rtc_timer_chan_data { |
| z_nrf_rtc_timer_compare_handler_t callback; |
| void *user_context; |
| volatile uint64_t target_time; |
| }; |
| |
| static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT]; |
| static atomic_t int_mask; |
| static atomic_t alloc_mask; |
| static atomic_t force_isr_mask; |
| |
| static uint32_t counter_sub(uint32_t a, uint32_t b) |
| { |
| return (a - b) & COUNTER_MAX; |
| } |
| |
| static void set_comparator(int32_t chan, uint32_t cyc) |
| { |
| nrf_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX); |
| } |
| |
| static uint32_t get_comparator(int32_t chan) |
| { |
| return nrf_rtc_cc_get(RTC, chan); |
| } |
| |
| static void event_clear(int32_t chan) |
| { |
| nrf_rtc_event_clear(RTC, RTC_CHANNEL_EVENT_ADDR(chan)); |
| } |
| |
| static void event_enable(int32_t chan) |
| { |
| nrf_rtc_event_enable(RTC, RTC_CHANNEL_INT_MASK(chan)); |
| } |
| |
| static void event_disable(int32_t chan) |
| { |
| nrf_rtc_event_disable(RTC, RTC_CHANNEL_INT_MASK(chan)); |
| } |
| |
| static uint32_t counter(void) |
| { |
| return nrf_rtc_counter_get(RTC); |
| } |
| |
| static uint32_t absolute_time_to_cc(uint64_t absolute_time) |
| { |
| /* 24 least significant bits represent target CC value */ |
| return absolute_time & COUNTER_MAX; |
| } |
| |
| static uint32_t full_int_lock(void) |
| { |
| uint32_t mcu_critical_state; |
| |
| if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) { |
| mcu_critical_state = __get_PRIMASK(); |
| __disable_irq(); |
| } else { |
| mcu_critical_state = irq_lock(); |
| } |
| |
| return mcu_critical_state; |
| } |
| |
| static void full_int_unlock(uint32_t mcu_critical_state) |
| { |
| if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) { |
| __set_PRIMASK(mcu_critical_state); |
| } else { |
| irq_unlock(mcu_critical_state); |
| } |
| } |
| |
| uint32_t z_nrf_rtc_timer_compare_evt_address_get(int32_t chan) |
| { |
| __ASSERT_NO_MSG(chan < CHAN_COUNT); |
| return nrf_rtc_event_address_get(RTC, nrf_rtc_compare_event_get(chan)); |
| } |
| |
| uint32_t z_nrf_rtc_timer_capture_task_address_get(int32_t chan) |
| { |
| #if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk) |
| __ASSERT_NO_MSG(chan < CHAN_COUNT); |
| if (chan == 0) { |
| return 0; |
| } |
| |
| nrf_rtc_task_t task = offsetof(NRF_RTC_Type, TASKS_CAPTURE[chan]); |
| |
| return nrf_rtc_task_address_get(RTC, task); |
| #else |
| ARG_UNUSED(chan); |
| return 0; |
| #endif |
| } |
| |
| static bool compare_int_lock(int32_t chan) |
| { |
| atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan)); |
| |
| nrf_rtc_int_disable(RTC, RTC_CHANNEL_INT_MASK(chan)); |
| |
| __DMB(); |
| __ISB(); |
| |
| return prev & BIT(chan); |
| } |
| |
| |
| bool z_nrf_rtc_timer_compare_int_lock(int32_t chan) |
| { |
| __ASSERT_NO_MSG(chan && chan < CHAN_COUNT); |
| |
| return compare_int_lock(chan); |
| } |
| |
| static void compare_int_unlock(int32_t chan, bool key) |
| { |
| if (key) { |
| atomic_or(&int_mask, BIT(chan)); |
| nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan)); |
| if (atomic_get(&force_isr_mask) & BIT(chan)) { |
| NVIC_SetPendingIRQ(RTC_IRQn); |
| } |
| } |
| } |
| |
| void z_nrf_rtc_timer_compare_int_unlock(int32_t chan, bool key) |
| { |
| __ASSERT_NO_MSG(chan && chan < CHAN_COUNT); |
| |
| compare_int_unlock(chan, key); |
| } |
| |
| uint32_t z_nrf_rtc_timer_compare_read(int32_t chan) |
| { |
| __ASSERT_NO_MSG(chan < CHAN_COUNT); |
| |
| return nrf_rtc_cc_get(RTC, chan); |
| } |
| |
| uint64_t z_nrf_rtc_timer_get_ticks(k_timeout_t t) |
| { |
| uint64_t curr_time; |
| int64_t curr_tick; |
| int64_t result; |
| int64_t abs_ticks; |
| |
| do { |
| curr_time = z_nrf_rtc_timer_read(); |
| curr_tick = sys_clock_tick_get(); |
| } while (curr_time != z_nrf_rtc_timer_read()); |
| |
| abs_ticks = Z_TICK_ABS(t.ticks); |
| if (abs_ticks < 0) { |
| /* relative timeout */ |
| return (t.ticks > COUNTER_SPAN) ? |
| -EINVAL : (curr_time + t.ticks); |
| } |
| |
| /* absolute timeout */ |
| result = abs_ticks - curr_tick; |
| |
| if (result > COUNTER_SPAN) { |
| return -EINVAL; |
| } |
| |
| return curr_time + result; |
| } |
| |
| /** @brief Function safely sets absolute alarm. |
| * |
| * It assumes that provided value is less than COUNTER_HALF_SPAN from now. |
| * It detects late setting and also handle +1 cycle case. |
| * |
| * @param[in] chan A channel for which a new CC value is to be set. |
| * |
| * @param[in] abs_val An absolute value of CC register to be set. |
| * |
| * @returns CC value that was actually set. It is equal to @p abs_val or |
| * shifted ahead if @p abs_val was too near in the future (+1 case). |
| */ |
| static uint32_t set_absolute_alarm(int32_t chan, uint32_t abs_val) |
| { |
| uint32_t now; |
| uint32_t now2; |
| uint32_t cc_val = abs_val & COUNTER_MAX; |
| uint32_t prev_cc = get_comparator(chan); |
| |
| do { |
| now = counter(); |
| |
| /* Handle case when previous event may generate an event. |
| * It is handled by setting CC to now (far in the future), |
| * in case previous event was set for next tick wait for half |
| * LF tick and clear event that may have been generated. |
| */ |
| set_comparator(chan, now); |
| if (counter_sub(prev_cc, now) == 1) { |
| /* It should wait for half of RTC tick 15.26us. As |
| * busy wait runs from different clock source thus |
| * wait longer to cover for discrepancy. |
| */ |
| k_busy_wait(19); |
| } |
| |
| /* If requested cc_val is in the past or next tick, set to 2 |
| * ticks from now. RTC may not generate event if CC is set for |
| * 1 tick from now. |
| */ |
| if (counter_sub(cc_val, now + 2) > COUNTER_HALF_SPAN) { |
| cc_val = now + 2; |
| } |
| |
| event_clear(chan); |
| event_enable(chan); |
| set_comparator(chan, cc_val); |
| now2 = counter(); |
| prev_cc = cc_val; |
| /* Rerun the algorithm if counter progressed during execution |
| * and cc_val is in the past or one tick from now. In such |
| * scenario, it is possible that event will not be generated. |
| * Rerunning the algorithm will delay the alarm but ensure that |
| * event will be generated at the moment indicated by value in |
| * CC register. |
| */ |
| } while ((now2 != now) && |
| (counter_sub(cc_val, now2 + 2) > COUNTER_HALF_SPAN)); |
| |
| return cc_val; |
| } |
| |
| static int compare_set_nolocks(int32_t chan, uint64_t target_time, |
| z_nrf_rtc_timer_compare_handler_t handler, |
| void *user_data) |
| { |
| int ret = 0; |
| uint32_t cc_value = absolute_time_to_cc(target_time); |
| uint64_t curr_time = z_nrf_rtc_timer_read(); |
| |
| if (curr_time < target_time) { |
| if (target_time - curr_time > COUNTER_SPAN) { |
| /* Target time is too distant. */ |
| return -EINVAL; |
| } |
| |
| if (target_time != cc_data[chan].target_time) { |
| /* Target time is valid and is different than currently set. |
| * Set CC value. |
| */ |
| uint32_t cc_set = set_absolute_alarm(chan, cc_value); |
| |
| target_time += counter_sub(cc_set, cc_value); |
| } |
| } else { |
| /* Force ISR handling when exiting from critical section. */ |
| atomic_or(&force_isr_mask, BIT(chan)); |
| } |
| |
| cc_data[chan].target_time = target_time; |
| cc_data[chan].callback = handler; |
| cc_data[chan].user_context = user_data; |
| |
| return ret; |
| } |
| |
| static int compare_set(int32_t chan, uint64_t target_time, |
| z_nrf_rtc_timer_compare_handler_t handler, |
| void *user_data) |
| { |
| bool key; |
| |
| key = compare_int_lock(chan); |
| |
| int ret = compare_set_nolocks(chan, target_time, handler, user_data); |
| |
| compare_int_unlock(chan, key); |
| |
| return ret; |
| } |
| |
| int z_nrf_rtc_timer_set(int32_t chan, uint64_t target_time, |
| z_nrf_rtc_timer_compare_handler_t handler, |
| void *user_data) |
| { |
| __ASSERT_NO_MSG(chan && chan < CHAN_COUNT); |
| |
| return compare_set(chan, target_time, handler, user_data); |
| } |
| |
| void z_nrf_rtc_timer_abort(int32_t chan) |
| { |
| __ASSERT_NO_MSG(chan && chan < CHAN_COUNT); |
| |
| bool key = compare_int_lock(chan); |
| |
| cc_data[chan].target_time = TARGET_TIME_INVALID; |
| event_clear(chan); |
| event_disable(chan); |
| (void)atomic_and(&force_isr_mask, ~BIT(chan)); |
| |
| compare_int_unlock(chan, key); |
| } |
| |
| uint64_t z_nrf_rtc_timer_read(void) |
| { |
| uint64_t val = ((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH; |
| |
| __DMB(); |
| |
| uint32_t cntr = counter(); |
| |
| val += cntr; |
| |
| if (cntr < OVERFLOW_RISK_RANGE_END) { |
| /* `overflow_cnt` can have incorrect value due to still unhandled overflow or |
| * due to possibility that this code preempted overflow interrupt before final write |
| * of `overflow_cnt`. Update of `anchor` occurs far in time from this moment, so |
| * `anchor` is considered valid and stable. Because of this timing there is no risk |
| * of incorrect `anchor` value caused by non-atomic read of 64-bit `anchor`. |
| */ |
| if (val < anchor) { |
| /* Unhandled overflow, detected, let's add correction */ |
| val += COUNTER_SPAN; |
| } |
| } else { |
| /* `overflow_cnt` is considered valid and stable in this range, no need to |
| * check validity using `anchor` |
| */ |
| } |
| |
| return val; |
| } |
| |
| static inline bool in_anchor_range(uint32_t cc_value) |
| { |
| return (cc_value >= ANCHOR_RANGE_START) && (cc_value < ANCHOR_RANGE_END); |
| } |
| |
| static inline bool anchor_update(uint32_t cc_value) |
| { |
| /* Update anchor when far from overflow */ |
| if (in_anchor_range(cc_value)) { |
| /* In this range `overflow_cnt` is considered valid and stable. |
| * Write of 64-bit `anchor` is non atomic. However it happens |
| * far in time from the moment the `anchor` is read in |
| * `z_nrf_rtc_timer_read`. |
| */ |
| anchor = (((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH) + cc_value; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void sys_clock_timeout_handler(int32_t chan, |
| uint64_t expire_time, |
| void *user_data) |
| { |
| uint32_t cc_value = absolute_time_to_cc(expire_time); |
| uint64_t dticks = (expire_time - last_count) / CYC_PER_TICK; |
| |
| last_count += dticks * CYC_PER_TICK; |
| |
| bool anchor_updated = anchor_update(cc_value); |
| |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| /* protection is not needed because we are in the RTC interrupt |
| * so it won't get preempted by the interrupt. |
| */ |
| compare_set(chan, last_count + CYC_PER_TICK, |
| sys_clock_timeout_handler, NULL); |
| } |
| |
| sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? |
| (int32_t)dticks : (dticks > 0)); |
| |
| if (cc_value == get_comparator(chan)) { |
| /* New value was not set. Set something that can update anchor. |
| * If anchor was updated we can enable same CC value to trigger |
| * interrupt after full cycle. Else set event in anchor update |
| * range. Since anchor was not updated we know that it's very |
| * far from mid point so setting is done without any protection. |
| */ |
| if (!anchor_updated) { |
| set_comparator(chan, COUNTER_HALF_SPAN); |
| } |
| event_enable(chan); |
| } |
| } |
| |
| static bool channel_processing_check_and_clear(int32_t chan) |
| { |
| bool result = false; |
| |
| uint32_t mcu_critical_state = full_int_lock(); |
| |
| if (nrf_rtc_int_enable_check(RTC, RTC_CHANNEL_INT_MASK(chan))) { |
| /* The processing of channel can be caused by CC match |
| * or be forced. |
| */ |
| result = atomic_and(&force_isr_mask, ~BIT(chan)) || |
| nrf_rtc_event_check(RTC, RTC_CHANNEL_EVENT_ADDR(chan)); |
| |
| if (result) { |
| event_clear(chan); |
| } |
| } |
| |
| full_int_unlock(mcu_critical_state); |
| |
| return result; |
| } |
| |
| static void process_channel(int32_t chan) |
| { |
| if (channel_processing_check_and_clear(chan)) { |
| void *user_context; |
| uint32_t mcu_critical_state; |
| uint64_t curr_time; |
| uint64_t expire_time; |
| z_nrf_rtc_timer_compare_handler_t handler = NULL; |
| |
| curr_time = z_nrf_rtc_timer_read(); |
| |
| /* This critical section is used to provide atomic access to |
| * cc_data structure and prevent higher priority contexts |
| * (including ZLIs) from overwriting it. |
| */ |
| mcu_critical_state = full_int_lock(); |
| |
| /* If target_time is in the past or is equal to current time |
| * value, execute the handler. |
| */ |
| expire_time = cc_data[chan].target_time; |
| if (curr_time >= expire_time) { |
| handler = cc_data[chan].callback; |
| user_context = cc_data[chan].user_context; |
| cc_data[chan].callback = NULL; |
| cc_data[chan].target_time = TARGET_TIME_INVALID; |
| event_disable(chan); |
| } |
| |
| full_int_unlock(mcu_critical_state); |
| |
| if (handler) { |
| handler(chan, expire_time, user_context); |
| } |
| } |
| } |
| |
| /* Note: this function has public linkage, and MUST have this |
| * particular name. The platform architecture itself doesn't care, |
| * but there is a test (tests/arch/arm_irq_vector_table) that needs |
| * to find it to it can set it in a custom vector table. Should |
| * probably better abstract that at some point (e.g. query and reset |
| * it by pointer at runtime, maybe?) so we don't have this leaky |
| * symbol. |
| */ |
| void rtc_nrf_isr(const void *arg) |
| { |
| ARG_UNUSED(arg); |
| |
| if (nrf_rtc_int_enable_check(RTC, NRF_RTC_INT_OVERFLOW_MASK) && |
| nrf_rtc_event_check(RTC, NRF_RTC_EVENT_OVERFLOW)) { |
| nrf_rtc_event_clear(RTC, NRF_RTC_EVENT_OVERFLOW); |
| overflow_cnt++; |
| } |
| |
| for (int32_t chan = 0; chan < CHAN_COUNT; chan++) { |
| process_channel(chan); |
| } |
| } |
| |
| int32_t z_nrf_rtc_timer_chan_alloc(void) |
| { |
| int32_t chan; |
| atomic_val_t prev; |
| do { |
| chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1; |
| if (chan < 0) { |
| return -ENOMEM; |
| } |
| prev = atomic_and(&alloc_mask, ~BIT(chan)); |
| } while (!(prev & BIT(chan))); |
| |
| return chan; |
| } |
| |
| void z_nrf_rtc_timer_chan_free(int32_t chan) |
| { |
| __ASSERT_NO_MSG(chan && chan < CHAN_COUNT); |
| |
| atomic_or(&alloc_mask, BIT(chan)); |
| } |
| |
| |
| void sys_clock_set_timeout(int32_t ticks, bool idle) |
| { |
| ARG_UNUSED(idle); |
| uint32_t cyc; |
| |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return; |
| } |
| |
| ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks; |
| ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS); |
| |
| uint32_t unannounced = z_nrf_rtc_timer_read() - last_count; |
| |
| /* If we haven't announced for more than half the 24-bit wrap |
| * duration, then force an announce to avoid loss of a wrap |
| * event. This can happen if new timeouts keep being set |
| * before the existing one triggers the interrupt. |
| */ |
| if (unannounced >= COUNTER_HALF_SPAN) { |
| ticks = 0; |
| } |
| |
| /* Get the cycles from last_count to the tick boundary after |
| * the requested ticks have passed starting now. |
| */ |
| cyc = ticks * CYC_PER_TICK + 1 + unannounced; |
| cyc += (CYC_PER_TICK - 1); |
| cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK; |
| |
| /* Due to elapsed time the calculation above might produce a |
| * duration that laps the counter. Don't let it. |
| */ |
| if (cyc > MAX_CYCLES) { |
| cyc = MAX_CYCLES; |
| } |
| |
| uint64_t target_time = cyc + last_count; |
| |
| compare_set(0, target_time, sys_clock_timeout_handler, NULL); |
| } |
| |
| uint32_t sys_clock_elapsed(void) |
| { |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return 0; |
| } |
| |
| return (z_nrf_rtc_timer_read() - last_count) / CYC_PER_TICK; |
| } |
| |
| uint32_t sys_clock_cycle_get_32(void) |
| { |
| return (uint32_t)z_nrf_rtc_timer_read(); |
| } |
| |
| static int sys_clock_driver_init(const struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| static const enum nrf_lfclk_start_mode mode = |
| IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ? |
| CLOCK_CONTROL_NRF_LF_START_NOWAIT : |
| (IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ? |
| CLOCK_CONTROL_NRF_LF_START_AVAILABLE : |
| CLOCK_CONTROL_NRF_LF_START_STABLE); |
| |
| /* TODO: replace with counter driver to access RTC */ |
| nrf_rtc_prescaler_set(RTC, 0); |
| for (int32_t chan = 0; chan < CHAN_COUNT; chan++) { |
| cc_data[chan].target_time = TARGET_TIME_INVALID; |
| nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan)); |
| } |
| |
| nrf_rtc_int_enable(RTC, NRF_RTC_INT_OVERFLOW_MASK); |
| |
| NVIC_ClearPendingIRQ(RTC_IRQn); |
| |
| IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority), |
| rtc_nrf_isr, 0, 0); |
| irq_enable(RTC_IRQn); |
| |
| nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR); |
| nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START); |
| |
| int_mask = BIT_MASK(CHAN_COUNT); |
| if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) { |
| alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1; |
| } |
| |
| uint32_t initial_timeout = IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? |
| (COUNTER_HALF_SPAN - 1) : |
| (counter() + CYC_PER_TICK); |
| |
| compare_set(0, initial_timeout, sys_clock_timeout_handler, NULL); |
| |
| z_nrf_clock_control_lf_on(mode); |
| |
| return 0; |
| } |
| |
| SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, |
| CONFIG_SYSTEM_CLOCK_INIT_PRIORITY); |