| /* |
| * Copyright (c) 2019 Intel Corporation |
| * Copyright (c) 2021 Microchip Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT microchip_xec_i2c_v2 |
| |
| #include <zephyr/kernel.h> |
| #include <soc.h> |
| #include <errno.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/drivers/clock_control/mchp_xec_clock_control.h> |
| #include <zephyr/drivers/gpio.h> |
| #include <zephyr/drivers/i2c.h> |
| #include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h> |
| #include <zephyr/drivers/pinctrl.h> |
| #include <zephyr/sys/printk.h> |
| #include <zephyr/sys/sys_io.h> |
| #include <zephyr/logging/log.h> |
| #include <zephyr/irq.h> |
| LOG_MODULE_REGISTER(i2c_mchp, CONFIG_I2C_LOG_LEVEL); |
| |
| #include "i2c-priv.h" |
| |
| #define SPEED_100KHZ_BUS 0 |
| #define SPEED_400KHZ_BUS 1 |
| #define SPEED_1MHZ_BUS 2 |
| |
| #define EC_OWN_I2C_ADDR 0x7F |
| #define RESET_WAIT_US 20 |
| |
| /* I2C timeout is 10 ms (WAIT_INTERVAL * WAIT_COUNT) */ |
| #define WAIT_INTERVAL 50 |
| #define WAIT_COUNT 200 |
| #define STOP_WAIT_COUNT 500 |
| #define PIN_CFG_WAIT 50 |
| |
| /* I2C Read/Write bit pos */ |
| #define I2C_READ_WRITE_POS 0 |
| |
| /* I2C recover SCL low retries */ |
| #define I2C_RECOVER_SCL_LOW_RETRIES 10 |
| /* I2C recover SDA low retries */ |
| #define I2C_RECOVER_SDA_LOW_RETRIES 3 |
| /* I2C recovery bit bang delay */ |
| #define I2C_RECOVER_BB_DELAY_US 5 |
| /* I2C recovery SCL sample delay */ |
| #define I2C_RECOVER_SCL_DELAY_US 50 |
| |
| /* I2C SCL and SDA lines(signals) */ |
| #define I2C_LINES_SCL_HI BIT(SOC_I2C_SCL_POS) |
| #define I2C_LINES_SDA_HI BIT(SOC_I2C_SDA_POS) |
| #define I2C_LINES_BOTH_HI (I2C_LINES_SCL_HI | I2C_LINES_SDA_HI) |
| |
| #define I2C_START 0U |
| #define I2C_RPT_START 1U |
| |
| #define I2C_ENI_DIS 0U |
| #define I2C_ENI_EN 1U |
| |
| #define I2C_WAIT_PIN_DEASSERT 0U |
| #define I2C_WAIT_PIN_ASSERT 1U |
| |
| #define I2C_XEC_CTRL_WR_DLY 8 |
| |
| #define I2C_XEC_STATE_STOPPED 1U |
| #define I2C_XEC_STATE_OPEN 2U |
| |
| #define I2C_XEC_OK 0 |
| #define I2C_XEC_ERR_LAB 1 |
| #define I2C_XEC_ERR_BUS 2 |
| #define I2C_XEC_ERR_TMOUT 3 |
| |
| #define XEC_GPIO_CTRL_BASE DT_REG_ADDR(DT_NODELABEL(gpio_000_036)) |
| |
| struct xec_speed_cfg { |
| uint32_t bus_clk; |
| uint32_t data_timing; |
| uint32_t start_hold_time; |
| uint32_t idle_scale; |
| uint32_t timeout_scale; |
| }; |
| |
| struct i2c_xec_config { |
| uint32_t port_sel; |
| uint32_t base_addr; |
| uint32_t clock_freq; |
| uint8_t girq; |
| uint8_t girq_pos; |
| uint8_t pcr_idx; |
| uint8_t pcr_bitpos; |
| const struct pinctrl_dev_config *pcfg; |
| void (*irq_config_func)(void); |
| }; |
| |
| struct i2c_xec_data { |
| uint8_t state; |
| uint8_t read_discard; |
| uint8_t speed_id; |
| struct i2c_target_config *target_cfg; |
| bool target_attached; |
| bool target_read; |
| uint32_t i2c_compl; |
| uint8_t i2c_ctrl; |
| uint8_t i2c_addr; |
| uint8_t i2c_status; |
| }; |
| |
| /* Recommended programming values based on 16MHz |
| * i2c_baud_clk_period/bus_clk_period - 2 = (low_period + hi_period) |
| * bus_clk_reg (16MHz/100KHz -2) = 0x4F + 0x4F |
| * (16MHz/400KHz -2) = 0x0F + 0x17 |
| * (16MHz/1MHz -2) = 0x05 + 0x09 |
| */ |
| static const struct xec_speed_cfg xec_cfg_params[] = { |
| [SPEED_100KHZ_BUS] = { |
| .bus_clk = 0x00004F4F, |
| .data_timing = 0x0C4D5006, |
| .start_hold_time = 0x0000004D, |
| .idle_scale = 0x01FC01ED, |
| .timeout_scale = 0x4B9CC2C7, |
| }, |
| [SPEED_400KHZ_BUS] = { |
| .bus_clk = 0x00000F17, |
| .data_timing = 0x040A0A06, |
| .start_hold_time = 0x0000000A, |
| .idle_scale = 0x01000050, |
| .timeout_scale = 0x159CC2C7, |
| }, |
| [SPEED_1MHZ_BUS] = { |
| .bus_clk = 0x00000509, |
| .data_timing = 0x04060601, |
| .start_hold_time = 0x00000006, |
| .idle_scale = 0x10000050, |
| .timeout_scale = 0x089CC2C7, |
| }, |
| }; |
| |
| static void i2c_ctl_wr(const struct device *dev, uint8_t ctrl) |
| { |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| |
| data->i2c_ctrl = ctrl; |
| regs->CTRLSTS = ctrl; |
| for (int i = 0; i < I2C_XEC_CTRL_WR_DLY; i++) { |
| regs->BLKID = ctrl; |
| } |
| } |
| |
| static int i2c_xec_reset_config(const struct device *dev); |
| |
| static int wait_bus_free(const struct device *dev, uint32_t nwait) |
| { |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| uint32_t count = nwait; |
| uint8_t sts = 0; |
| |
| while (count--) { |
| sts = regs->CTRLSTS; |
| data->i2c_status = sts; |
| if (sts & MCHP_I2C_SMB_STS_NBB) { |
| break; /* bus is free */ |
| } |
| k_busy_wait(WAIT_INTERVAL); |
| } |
| |
| /* NBB -> 1 not busy can occur for STOP, BER, or LAB */ |
| if (sts == (MCHP_I2C_SMB_STS_PIN | MCHP_I2C_SMB_STS_NBB)) { |
| /* No service requested(PIN=1), NotBusy(NBB=1), and no errors */ |
| return 0; |
| } |
| |
| if (sts & MCHP_I2C_SMB_STS_BER) { |
| return I2C_XEC_ERR_BUS; |
| } |
| |
| if (sts & MCHP_I2C_SMB_STS_LAB) { |
| return I2C_XEC_ERR_LAB; |
| } |
| |
| return I2C_XEC_ERR_TMOUT; |
| } |
| |
| /* |
| * returns state of I2C SCL and SDA lines. |
| * b[0] = SCL, b[1] = SDA |
| * Call soc specific routine to read GPIO pad input. |
| * Why? We can get the pins from our PINCTRL info but |
| * we do not know which pin is I2C clock and which pin |
| * is I2C data. There's no ordering in PINCTRL DT unless |
| * we impose an order. |
| */ |
| static uint32_t get_lines(const struct device *dev) |
| { |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| uint8_t port = regs->CFG & MCHP_I2C_SMB_CFG_PORT_SEL_MASK; |
| uint32_t lines = 0u; |
| |
| soc_i2c_port_lines_get(port, &lines); |
| |
| return lines; |
| } |
| |
| static int i2c_xec_reset_config(const struct device *dev) |
| { |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| |
| data->state = I2C_XEC_STATE_STOPPED; |
| data->read_discard = 0; |
| |
| /* Assert RESET */ |
| z_mchp_xec_pcr_periph_reset(cfg->pcr_idx, cfg->pcr_bitpos); |
| |
| regs->CFG = MCHP_I2C_SMB_CFG_FLUSH_SXBUF_WO | |
| MCHP_I2C_SMB_CFG_FLUSH_SRBUF_WO | |
| MCHP_I2C_SMB_CFG_FLUSH_MXBUF_WO | |
| MCHP_I2C_SMB_CFG_FLUSH_MRBUF_WO; |
| |
| mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos); |
| |
| /* PIN=1 to clear all status except NBB and synchronize */ |
| i2c_ctl_wr(dev, MCHP_I2C_SMB_CTRL_PIN); |
| |
| /* |
| * Controller implements two peripheral addresses for itself. |
| * It always monitors whether an external controller issues START |
| * plus target address. We should write valid peripheral addresses |
| * that do not match any peripheral on the bus. |
| * An alternative is to use the default 0 value which is the |
| * general call address and disable the general call match |
| * enable in the configuration register. |
| */ |
| regs->OWN_ADDR = EC_OWN_I2C_ADDR | (EC_OWN_I2C_ADDR << 8); |
| #ifdef CONFIG_I2C_TARGET |
| if (data->target_cfg) { |
| regs->OWN_ADDR = data->target_cfg->address; |
| } |
| #endif |
| /* Port number and filter enable MUST be written before enabling */ |
| regs->CFG |= BIT(14); /* disable general call */ |
| regs->CFG |= MCHP_I2C_SMB_CFG_FEN; |
| regs->CFG |= (cfg->port_sel & MCHP_I2C_SMB_CFG_PORT_SEL_MASK); |
| |
| /* |
| * Before enabling the controller program the desired bus clock, |
| * repeated start hold time, data timing, and timeout scaling |
| * registers. |
| */ |
| regs->BUSCLK = xec_cfg_params[data->speed_id].bus_clk; |
| regs->RSHTM = xec_cfg_params[data->speed_id].start_hold_time; |
| regs->DATATM = xec_cfg_params[data->speed_id].data_timing; |
| regs->TMOUTSC = xec_cfg_params[data->speed_id].timeout_scale; |
| regs->IDLSC = xec_cfg_params[data->speed_id].idle_scale; |
| |
| /* |
| * PIN=1 clears all status except NBB |
| * ESO=1 enables output drivers |
| * ACK=1 enable ACK generation when data/address is clocked in. |
| */ |
| i2c_ctl_wr(dev, MCHP_I2C_SMB_CTRL_PIN | |
| MCHP_I2C_SMB_CTRL_ESO | |
| MCHP_I2C_SMB_CTRL_ACK); |
| |
| /* Enable controller */ |
| regs->CFG |= MCHP_I2C_SMB_CFG_ENAB; |
| k_busy_wait(RESET_WAIT_US); |
| |
| /* wait for NBB=1, BER, LAB, or timeout */ |
| int rc = wait_bus_free(dev, WAIT_COUNT); |
| |
| return rc; |
| } |
| |
| /* |
| * If SCL is low sample I2C_RECOVER_SCL_LOW_RETRIES times with a 5 us delay |
| * between samples. If SCL remains low then return -EBUSY |
| * If SCL is High and SDA is low then loop up to I2C_RECOVER_SDA_LOW_RETRIES |
| * times driving the pins: |
| * Drive SCL high |
| * delay I2C_RECOVER_BB_DELAY_US |
| * Generate 9 clock pulses on SCL checking SDA before each falling edge of SCL |
| * If SDA goes high exit clock loop else to all 9 clocks |
| * Drive SDA low, delay 5 us, release SDA, delay 5 us |
| * Both lines are high then exit SDA recovery loop |
| * Both lines should not be driven |
| * Check both lines: if any bad return error else return success |
| * NOTE 1: Bit-bang mode uses a HW MUX to switch the lines away from the I2C |
| * controller logic to BB logic. |
| * NOTE 2: Bit-bang mode requires HW timeouts to be disabled. |
| * NOTE 3: Bit-bang mode requires the controller's configuration enable bit |
| * to be set. |
| * NOTE 4: The controller must be reset after using bit-bang mode. |
| */ |
| static int i2c_xec_recover_bus(const struct device *dev) |
| { |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| int i, j, ret; |
| |
| LOG_ERR("I2C attempt bus recovery\n"); |
| |
| /* reset controller to a known state */ |
| z_mchp_xec_pcr_periph_reset(cfg->pcr_idx, cfg->pcr_bitpos); |
| |
| regs->CFG = BIT(14) | MCHP_I2C_SMB_CFG_FEN | |
| (cfg->port_sel & MCHP_I2C_SMB_CFG_PORT_SEL_MASK); |
| regs->CFG |= MCHP_I2C_SMB_CFG_FLUSH_SXBUF_WO | |
| MCHP_I2C_SMB_CFG_FLUSH_SRBUF_WO | |
| MCHP_I2C_SMB_CFG_FLUSH_MXBUF_WO | |
| MCHP_I2C_SMB_CFG_FLUSH_MRBUF_WO; |
| regs->CTRLSTS = MCHP_I2C_SMB_CTRL_PIN; |
| regs->BBCTRL = MCHP_I2C_SMB_BB_EN | MCHP_I2C_SMB_BB_CL | |
| MCHP_I2C_SMB_BB_DAT; |
| regs->CFG |= MCHP_I2C_SMB_CFG_ENAB; |
| |
| if (!(regs->BBCTRL & MCHP_I2C_SMB_BB_CLKI_RO)) { |
| for (i = 0;; i++) { |
| if (i >= I2C_RECOVER_SCL_LOW_RETRIES) { |
| ret = -EBUSY; |
| goto recov_exit; |
| } |
| k_busy_wait(I2C_RECOVER_SCL_DELAY_US); |
| if (regs->BBCTRL & MCHP_I2C_SMB_BB_CLKI_RO) { |
| break; /* SCL went High */ |
| } |
| } |
| } |
| |
| if (regs->BBCTRL & MCHP_I2C_SMB_BB_DATI_RO) { |
| ret = 0; |
| goto recov_exit; |
| } |
| |
| ret = -EBUSY; |
| /* SDA recovery */ |
| for (i = 0; i < I2C_RECOVER_SDA_LOW_RETRIES; i++) { |
| /* SCL output mode and tri-stated */ |
| regs->BBCTRL = MCHP_I2C_SMB_BB_EN | |
| MCHP_I2C_SMB_BB_SCL_DIR_OUT | |
| MCHP_I2C_SMB_BB_CL | |
| MCHP_I2C_SMB_BB_DAT; |
| k_busy_wait(I2C_RECOVER_BB_DELAY_US); |
| |
| for (j = 0; j < 9; j++) { |
| if (regs->BBCTRL & MCHP_I2C_SMB_BB_DATI_RO) { |
| break; |
| } |
| /* drive SCL low */ |
| regs->BBCTRL = MCHP_I2C_SMB_BB_EN | |
| MCHP_I2C_SMB_BB_SCL_DIR_OUT | |
| MCHP_I2C_SMB_BB_DAT; |
| k_busy_wait(I2C_RECOVER_BB_DELAY_US); |
| /* release SCL: pulled high by external pull-up */ |
| regs->BBCTRL = MCHP_I2C_SMB_BB_EN | |
| MCHP_I2C_SMB_BB_SCL_DIR_OUT | |
| MCHP_I2C_SMB_BB_CL | |
| MCHP_I2C_SMB_BB_DAT; |
| k_busy_wait(I2C_RECOVER_BB_DELAY_US); |
| } |
| |
| /* SCL is High. Produce rising edge on SCL for STOP */ |
| regs->BBCTRL = MCHP_I2C_SMB_BB_EN | MCHP_I2C_SMB_BB_CL | |
| MCHP_I2C_SMB_BB_SDA_DIR_OUT; /* drive low */ |
| k_busy_wait(I2C_RECOVER_BB_DELAY_US); |
| regs->BBCTRL = MCHP_I2C_SMB_BB_EN | MCHP_I2C_SMB_BB_CL | |
| MCHP_I2C_SMB_BB_DAT; /* release SCL */ |
| k_busy_wait(I2C_RECOVER_BB_DELAY_US); |
| |
| /* check if SCL and SDA are both high */ |
| uint8_t bb = regs->BBCTRL & |
| (MCHP_I2C_SMB_BB_CLKI_RO | MCHP_I2C_SMB_BB_DATI_RO); |
| |
| if (bb == (MCHP_I2C_SMB_BB_CLKI_RO | MCHP_I2C_SMB_BB_DATI_RO)) { |
| ret = 0; /* successful recovery */ |
| goto recov_exit; |
| } |
| } |
| |
| recov_exit: |
| /* BB mode disable reconnects SCL and SDA to I2C logic. */ |
| regs->BBCTRL = 0; |
| regs->CTRLSTS = MCHP_I2C_SMB_CTRL_PIN; /* clear status */ |
| i2c_xec_reset_config(dev); /* reset controller */ |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_I2C_TARGET |
| /* |
| * Restart I2C controller as target for ACK of address match. |
| * Setting PIN clears all status in I2C.Status register except NBB. |
| */ |
| static void restart_target(const struct device *dev) |
| { |
| i2c_ctl_wr(dev, MCHP_I2C_SMB_CTRL_PIN | MCHP_I2C_SMB_CTRL_ESO | |
| MCHP_I2C_SMB_CTRL_ACK | MCHP_I2C_SMB_CTRL_ENI); |
| } |
| |
| /* |
| * Configure I2C controller acting as target to NACK the next received byte. |
| * NOTE: Firmware must re-enable ACK generation before the start of the next |
| * transaction otherwise the controller will NACK its target addresses. |
| */ |
| static void target_config_for_nack(const struct device *dev) |
| { |
| i2c_ctl_wr(dev, MCHP_I2C_SMB_CTRL_PIN | MCHP_I2C_SMB_CTRL_ESO | |
| MCHP_I2C_SMB_CTRL_ENI); |
| } |
| #endif |
| |
| static int wait_pin(const struct device *dev, bool pin_assert, uint32_t nwait) |
| { |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| |
| for (;;) { |
| k_busy_wait(WAIT_INTERVAL); |
| |
| data->i2c_compl = regs->COMPL; |
| data->i2c_status = regs->CTRLSTS; |
| |
| if (data->i2c_status & MCHP_I2C_SMB_STS_BER) { |
| return I2C_XEC_ERR_BUS; |
| } |
| |
| if (data->i2c_status & MCHP_I2C_SMB_STS_LAB) { |
| return I2C_XEC_ERR_LAB; |
| } |
| |
| if (!(data->i2c_status & MCHP_I2C_SMB_STS_PIN)) { |
| if (pin_assert) { |
| return 0; |
| } |
| } else if (!pin_assert) { |
| return 0; |
| } |
| |
| if (nwait) { |
| --nwait; |
| } else { |
| break; |
| } |
| } |
| |
| return I2C_XEC_ERR_TMOUT; |
| } |
| |
| static int gen_start(const struct device *dev, uint8_t addr8, |
| bool is_repeated) |
| { |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| uint8_t ctrl = MCHP_I2C_SMB_CTRL_ESO | MCHP_I2C_SMB_CTRL_STA | |
| MCHP_I2C_SMB_CTRL_ACK; |
| |
| data->i2c_addr = addr8; |
| |
| if (is_repeated) { |
| i2c_ctl_wr(dev, ctrl); |
| regs->I2CDATA = addr8; |
| } else { |
| ctrl |= MCHP_I2C_SMB_CTRL_PIN; |
| regs->I2CDATA = addr8; |
| i2c_ctl_wr(dev, ctrl); |
| } |
| |
| return 0; |
| } |
| |
| static int gen_stop(const struct device *dev) |
| { |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| uint8_t ctrl = MCHP_I2C_SMB_CTRL_PIN | MCHP_I2C_SMB_CTRL_ESO | |
| MCHP_I2C_SMB_CTRL_STO | MCHP_I2C_SMB_CTRL_ACK; |
| |
| data->i2c_ctrl = ctrl; |
| regs->CTRLSTS = ctrl; |
| |
| return 0; |
| } |
| |
| static int do_stop(const struct device *dev, uint32_t nwait) |
| { |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| int ret; |
| |
| data->state = I2C_XEC_STATE_STOPPED; |
| data->read_discard = 0; |
| |
| gen_stop(dev); |
| ret = wait_bus_free(dev, nwait); |
| if (ret) { |
| uint32_t lines = get_lines(dev); |
| |
| if (lines != I2C_LINES_BOTH_HI) { |
| i2c_xec_recover_bus(dev); |
| } else { |
| ret = i2c_xec_reset_config(dev); |
| } |
| } |
| |
| if (ret == 0) { |
| /* stop success: prepare for next transaction */ |
| regs->CTRLSTS = MCHP_I2C_SMB_CTRL_PIN | MCHP_I2C_SMB_CTRL_ESO | |
| MCHP_I2C_SMB_CTRL_ACK; |
| } |
| |
| return ret; |
| } |
| |
| static int do_start(const struct device *dev, uint8_t addr8, bool is_repeated) |
| { |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| int ret; |
| |
| gen_start(dev, addr8, is_repeated); |
| ret = wait_pin(dev, I2C_WAIT_PIN_ASSERT, WAIT_COUNT); |
| if (ret) { |
| i2c_xec_reset_config(dev); |
| return ret; |
| } |
| |
| /* PIN 1->0: check for NACK */ |
| if (data->i2c_status & MCHP_I2C_SMB_STS_LRB_AD0) { |
| gen_stop(dev); |
| ret = wait_bus_free(dev, WAIT_COUNT); |
| if (ret) { |
| i2c_xec_reset_config(dev); |
| } |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int i2c_xec_configure(const struct device *dev, |
| uint32_t dev_config_raw) |
| { |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| |
| if (!(dev_config_raw & I2C_MODE_CONTROLLER)) { |
| return -ENOTSUP; |
| } |
| |
| if (dev_config_raw & I2C_ADDR_10_BITS) { |
| return -ENOTSUP; |
| } |
| |
| switch (I2C_SPEED_GET(dev_config_raw)) { |
| case I2C_SPEED_STANDARD: |
| data->speed_id = SPEED_100KHZ_BUS; |
| break; |
| case I2C_SPEED_FAST: |
| data->speed_id = SPEED_400KHZ_BUS; |
| break; |
| case I2C_SPEED_FAST_PLUS: |
| data->speed_id = SPEED_1MHZ_BUS; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| int ret = i2c_xec_reset_config(dev); |
| |
| return ret; |
| } |
| |
| /* I2C Controller transmit: polling implementation */ |
| static int ctrl_tx(const struct device *dev, struct i2c_msg *msg, uint16_t addr) |
| { |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| int ret = 0; |
| uint8_t mflags = msg->flags; |
| uint8_t addr8 = (uint8_t)((addr & 0x7FU) << 1); |
| |
| if (data->state == I2C_XEC_STATE_STOPPED) { |
| data->i2c_addr = addr8; |
| /* Is bus free and controller ready? */ |
| ret = wait_bus_free(dev, WAIT_COUNT); |
| if (ret) { |
| ret = i2c_xec_recover_bus(dev); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| ret = do_start(dev, addr8, I2C_START); |
| if (ret) { |
| return ret; |
| } |
| |
| data->state = I2C_XEC_STATE_OPEN; |
| |
| } else if (mflags & I2C_MSG_RESTART) { |
| data->i2c_addr = addr8; |
| ret = do_start(dev, addr8, I2C_RPT_START); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| for (size_t n = 0; n < msg->len; n++) { |
| regs->I2CDATA = msg->buf[n]; |
| ret = wait_pin(dev, I2C_WAIT_PIN_ASSERT, WAIT_COUNT); |
| if (ret) { |
| i2c_xec_reset_config(dev); |
| return ret; |
| } |
| if (data->i2c_status & MCHP_I2C_SMB_STS_LRB_AD0) { /* NACK? */ |
| do_stop(dev, STOP_WAIT_COUNT); |
| return -EIO; |
| } |
| } |
| |
| if (mflags & I2C_MSG_STOP) { |
| ret = do_stop(dev, STOP_WAIT_COUNT); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * I2C Controller receive: polling implementation |
| * Transmitting a target address with BIT[0] == 1 causes the controller |
| * to enter controller-read mode where every read of I2CDATA generates |
| * clocks for the next byte. When we generate START or Repeated-START |
| * and transmit an address the address is also clocked in during |
| * address transmission. The address must read and discarded. |
| * Read of I2CDATA returns data currently in I2C read buffer, sets |
| * I2CSTATUS.PIN = 1, and !!generates clocks for the next |
| * byte!! |
| * For this controller to NACK the last byte we must clear the |
| * I2C CTRL register ACK bit BEFORE reading the next to last |
| * byte. Before reading the last byte we configure I2C CTRL to generate a STOP |
| * and then read the last byte from I2 DATA. |
| * When controller is in STOP mode it will not generate clocks when I2CDATA is |
| * read. UGLY HW DESIGN. |
| * We will NOT attempt to follow this HW design for Controller read except |
| * when all information is available: STOP message flag set AND number of |
| * bytes to read including dummy is >= 2. General usage can result in the |
| * controller not NACK'ing the last byte. |
| */ |
| static int ctrl_rx(const struct device *dev, struct i2c_msg *msg, uint16_t addr) |
| { |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| int ret = 0; |
| size_t data_len = msg->len; |
| uint8_t mflags = msg->flags; |
| uint8_t addr8 = (uint8_t)(((addr & 0x7FU) << 1) | BIT(0)); |
| uint8_t temp = 0; |
| |
| if (data->state == I2C_XEC_STATE_STOPPED) { |
| data->i2c_addr = addr8; |
| /* Is bus free and controller ready? */ |
| ret = wait_bus_free(dev, WAIT_COUNT); |
| if (ret) { |
| i2c_xec_reset_config(dev); |
| return ret; |
| } |
| |
| ret = do_start(dev, addr8, I2C_START); |
| if (ret) { |
| return ret; |
| } |
| |
| data->state = I2C_XEC_STATE_OPEN; |
| |
| /* controller clocked address into I2CDATA */ |
| data->read_discard = 1U; |
| |
| } else if (mflags & I2C_MSG_RESTART) { |
| data->i2c_addr = addr8; |
| ret = do_start(dev, addr8, I2C_RPT_START); |
| if (ret) { |
| return ret; |
| } |
| |
| /* controller clocked address into I2CDATA */ |
| data->read_discard = 1U; |
| } |
| |
| if (!data_len) { /* requested message length is 0 */ |
| ret = 0; |
| if (mflags & I2C_MSG_STOP) { |
| data->state = I2C_XEC_STATE_STOPPED; |
| data->read_discard = 0; |
| ret = do_stop(dev, STOP_WAIT_COUNT); |
| } |
| return ret; |
| } |
| |
| if (data->read_discard) { |
| data_len++; |
| } |
| |
| uint8_t *p8 = &msg->buf[0]; |
| |
| while (data_len) { |
| if (mflags & I2C_MSG_STOP) { |
| if (data_len == 2) { |
| i2c_ctl_wr(dev, MCHP_I2C_SMB_CTRL_ESO); |
| } else if (data_len == 1) { |
| break; |
| } |
| } |
| temp = regs->I2CDATA; /* generates clocks */ |
| if (data->read_discard) { |
| data->read_discard = 0; |
| } else { |
| *p8++ = temp; |
| } |
| ret = wait_pin(dev, I2C_WAIT_PIN_ASSERT, WAIT_COUNT); |
| if (ret) { |
| i2c_xec_reset_config(dev); |
| return ret; |
| } |
| data_len--; |
| } |
| |
| if (mflags & I2C_MSG_STOP) { |
| data->state = I2C_XEC_STATE_STOPPED; |
| data->read_discard = 0; |
| ret = do_stop(dev, STOP_WAIT_COUNT); |
| if (ret == 0) { |
| *p8 = regs->I2CDATA; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int i2c_xec_transfer(const struct device *dev, struct i2c_msg *msgs, |
| uint8_t num_msgs, uint16_t addr) |
| { |
| struct i2c_xec_data *data = dev->data; |
| int ret = 0; |
| |
| #ifdef CONFIG_I2C_TARGET |
| if (data->target_attached) { |
| LOG_ERR("Device is registered as target"); |
| return -EBUSY; |
| } |
| #endif |
| |
| for (uint8_t i = 0; i < num_msgs; i++) { |
| struct i2c_msg *m = &msgs[i]; |
| |
| if ((m->flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) { |
| ret = ctrl_tx(dev, m, addr); |
| } else { |
| ret = ctrl_rx(dev, m, addr); |
| } |
| if (ret) { |
| data->state = I2C_XEC_STATE_STOPPED; |
| data->read_discard = 0; |
| LOG_ERR("i2x_xfr: flags: %x error: %d", m->flags, ret); |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void i2c_xec_bus_isr(const struct device *dev) |
| { |
| #ifdef CONFIG_I2C_TARGET |
| const struct i2c_xec_config *cfg = |
| (const struct i2c_xec_config *const) (dev->config); |
| struct i2c_xec_data *data = dev->data; |
| const struct i2c_target_callbacks *target_cb = |
| data->target_cfg->callbacks; |
| struct i2c_smb_regs *regs = (struct i2c_smb_regs *)cfg->base_addr; |
| int ret; |
| uint32_t status; |
| uint32_t compl_status; |
| uint8_t val; |
| uint8_t dummy = 0U; |
| |
| /* Get current status */ |
| status = regs->CTRLSTS; |
| compl_status = regs->COMPL & MCHP_I2C_SMB_CMPL_RW1C_MASK; |
| |
| /* Idle interrupt enabled and active? */ |
| if ((regs->CFG & MCHP_I2C_SMB_CFG_ENIDI) && |
| (compl_status & MCHP_I2C_SMB_CMPL_IDLE_RWC)) { |
| regs->CFG &= ~MCHP_I2C_SMB_CFG_ENIDI; |
| if (status & MCHP_I2C_SMB_STS_NBB) { |
| restart_target(dev); |
| goto clear_iag; |
| } |
| } |
| |
| if (!data->target_attached) { |
| goto clear_iag; |
| } |
| |
| /* Bus Error */ |
| if (status & MCHP_I2C_SMB_STS_BER) { |
| if (target_cb->stop) { |
| target_cb->stop(data->target_cfg); |
| } |
| restart_target(dev); |
| goto clear_iag; |
| } |
| |
| /* External stop */ |
| if (status & MCHP_I2C_SMB_STS_EXT_STOP) { |
| if (target_cb->stop) { |
| target_cb->stop(data->target_cfg); |
| } |
| restart_target(dev); |
| goto clear_iag; |
| } |
| |
| /* Address byte handling */ |
| if (status & MCHP_I2C_SMB_STS_AAS) { |
| if (status & MCHP_I2C_SMB_STS_PIN) { |
| goto clear_iag; |
| } |
| |
| uint8_t rx_data = regs->I2CDATA; |
| |
| if (rx_data & BIT(I2C_READ_WRITE_POS)) { |
| /* target transmitter mode */ |
| data->target_read = true; |
| val = dummy; |
| if (target_cb->read_requested) { |
| target_cb->read_requested( |
| data->target_cfg, &val); |
| |
| /* Application target transmit handler |
| * does not have data to send. In |
| * target transmit mode the external |
| * Controller is ACK's data we send. |
| * All we can do is keep sending dummy |
| * data. We assume read_requested does |
| * not modify the value pointed to by val |
| * if it has not data(returns error). |
| */ |
| } |
| /* |
| * Writing I2CData causes this HW to release SCL |
| * ending clock stretching. The external Controller |
| * senses SCL released and begins generating clocks |
| * and capturing data driven by this controller |
| * on SDA. External Controller ACK's data until it |
| * wants no more then it will NACK. |
| */ |
| regs->I2CDATA = val; |
| goto clear_iag; /* Exit ISR */ |
| } else { |
| /* target receiver mode */ |
| data->target_read = false; |
| if (target_cb->write_requested) { |
| ret = target_cb->write_requested( |
| data->target_cfg); |
| if (ret) { |
| /* |
| * Application handler can't accept |
| * data. Configure HW to NACK next |
| * data transmitted by external |
| * Controller. |
| * !!! TODO We must re-program our HW |
| * for address ACK before next |
| * transaction is begun !!! |
| */ |
| target_config_for_nack(dev); |
| } |
| } |
| goto clear_iag; /* Exit ISR */ |
| } |
| } |
| |
| if (data->target_read) { /* Target transmitter mode */ |
| |
| /* Master has Nacked, then just write a dummy byte */ |
| status = regs->CTRLSTS; |
| if (status & MCHP_I2C_SMB_STS_LRB_AD0) { |
| |
| /* |
| * ISSUE: HW will not detect external STOP in |
| * target transmit mode. Enable IDLE interrupt |
| * to catch PIN 0 -> 1 and NBB 0 -> 1. |
| */ |
| regs->CFG |= MCHP_I2C_SMB_CFG_ENIDI; |
| |
| /* |
| * dummy write causes this controller's PIN status |
| * to de-assert 0 -> 1. Data is not transmitted. |
| * SCL is not driven low by this controller. |
| */ |
| regs->I2CDATA = dummy; |
| |
| status = regs->CTRLSTS; |
| |
| } else { |
| val = dummy; |
| if (target_cb->read_processed) { |
| target_cb->read_processed( |
| data->target_cfg, &val); |
| } |
| regs->I2CDATA = val; |
| } |
| } else { /* target receiver mode */ |
| /* |
| * Reading the I2CData register causes this target to release |
| * SCL. The external Controller senses SCL released generates |
| * clocks for transmitting the next data byte. |
| * Reading I2C Data register causes PIN status 0 -> 1. |
| */ |
| val = regs->I2CDATA; |
| if (target_cb->write_received) { |
| /* |
| * Call back returns error if we should NACK |
| * next byte. |
| */ |
| ret = target_cb->write_received(data->target_cfg, val); |
| if (ret) { |
| /* |
| * Configure HW to NACK next byte. It will not |
| * generate clocks for another byte of data |
| */ |
| target_config_for_nack(dev); |
| } |
| } |
| } |
| |
| clear_iag: |
| regs->COMPL = compl_status; |
| mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos); |
| #endif |
| } |
| |
| #ifdef CONFIG_I2C_TARGET |
| static int i2c_xec_target_register(const struct device *dev, |
| struct i2c_target_config *config) |
| { |
| const struct i2c_xec_config *cfg = dev->config; |
| struct i2c_xec_data *data = dev->data; |
| int ret; |
| |
| if (!config) { |
| return -EINVAL; |
| } |
| |
| if (data->target_attached) { |
| return -EBUSY; |
| } |
| |
| /* Wait for any outstanding transactions to complete so that |
| * the bus is free |
| */ |
| ret = wait_bus_free(dev, WAIT_COUNT); |
| if (ret) { |
| return ret; |
| } |
| |
| data->target_cfg = config; |
| |
| ret = i2c_xec_reset_config(dev); |
| if (ret) { |
| return ret; |
| } |
| |
| restart_target(dev); |
| |
| data->target_attached = true; |
| |
| /* Clear before enabling girq bit */ |
| mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos); |
| mchp_xec_ecia_girq_src_en(cfg->girq, cfg->girq_pos); |
| |
| return 0; |
| } |
| |
| static int i2c_xec_target_unregister(const struct device *dev, |
| struct i2c_target_config *config) |
| { |
| const struct i2c_xec_config *cfg = dev->config; |
| struct i2c_xec_data *data = dev->data; |
| |
| if (!data->target_attached) { |
| return -EINVAL; |
| } |
| |
| data->target_cfg = NULL; |
| data->target_attached = false; |
| |
| mchp_xec_ecia_girq_src_dis(cfg->girq, cfg->girq_pos); |
| |
| return 0; |
| } |
| #endif |
| |
| static const struct i2c_driver_api i2c_xec_driver_api = { |
| .configure = i2c_xec_configure, |
| .transfer = i2c_xec_transfer, |
| #ifdef CONFIG_I2C_TARGET |
| .target_register = i2c_xec_target_register, |
| .target_unregister = i2c_xec_target_unregister, |
| #endif |
| #ifdef CONFIG_I2C_RTIO |
| .iodev_submit = i2c_iodev_submit_fallback, |
| #endif |
| }; |
| |
| static int i2c_xec_init(const struct device *dev) |
| { |
| const struct i2c_xec_config *cfg = dev->config; |
| struct i2c_xec_data *data = |
| (struct i2c_xec_data *const) (dev->data); |
| int ret; |
| uint32_t bitrate_cfg; |
| |
| data->state = I2C_XEC_STATE_STOPPED; |
| data->target_cfg = NULL; |
| data->target_attached = false; |
| |
| ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); |
| if (ret != 0) { |
| LOG_ERR("XEC I2C pinctrl setup failed (%d)", ret); |
| return ret; |
| } |
| |
| bitrate_cfg = i2c_map_dt_bitrate(cfg->clock_freq); |
| if (!bitrate_cfg) { |
| return -EINVAL; |
| } |
| |
| /* Default configuration */ |
| ret = i2c_xec_configure(dev, I2C_MODE_CONTROLLER | bitrate_cfg); |
| if (ret) { |
| return ret; |
| } |
| |
| #ifdef CONFIG_I2C_TARGET |
| const struct i2c_xec_config *config = |
| (const struct i2c_xec_config *const) (dev->config); |
| |
| config->irq_config_func(); |
| #endif |
| return 0; |
| } |
| |
| #define I2C_XEC_DEVICE(n) \ |
| \ |
| PINCTRL_DT_INST_DEFINE(n); \ |
| \ |
| static void i2c_xec_irq_config_func_##n(void); \ |
| \ |
| static struct i2c_xec_data i2c_xec_data_##n; \ |
| static const struct i2c_xec_config i2c_xec_config_##n = { \ |
| .base_addr = \ |
| DT_INST_REG_ADDR(n), \ |
| .port_sel = DT_INST_PROP(n, port_sel), \ |
| .clock_freq = DT_INST_PROP(n, clock_frequency), \ |
| .girq = DT_INST_PROP_BY_IDX(n, girqs, 0), \ |
| .girq_pos = DT_INST_PROP_BY_IDX(n, girqs, 1), \ |
| .pcr_idx = DT_INST_PROP_BY_IDX(n, pcrs, 0), \ |
| .pcr_bitpos = DT_INST_PROP_BY_IDX(n, pcrs, 1), \ |
| .irq_config_func = i2c_xec_irq_config_func_##n, \ |
| .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ |
| }; \ |
| I2C_DEVICE_DT_INST_DEFINE(n, i2c_xec_init, NULL, \ |
| &i2c_xec_data_##n, &i2c_xec_config_##n, \ |
| POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \ |
| &i2c_xec_driver_api); \ |
| \ |
| static void i2c_xec_irq_config_func_##n(void) \ |
| { \ |
| IRQ_CONNECT(DT_INST_IRQN(n), \ |
| DT_INST_IRQ(n, priority), \ |
| i2c_xec_bus_isr, \ |
| DEVICE_DT_INST_GET(n), 0); \ |
| irq_enable(DT_INST_IRQN(n)); \ |
| } |
| |
| DT_INST_FOREACH_STATUS_OKAY(I2C_XEC_DEVICE) |