| /* |
| * Copyright (c) 2019 Carlo Caione <ccaione@baylibre.com> |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| #include <zephyr/init.h> |
| #include <zephyr/drivers/timer/arm_arch_timer.h> |
| #include <zephyr/drivers/timer/system_timer.h> |
| #include <zephyr/irq.h> |
| #include <zephyr/sys_clock.h> |
| #include <zephyr/spinlock.h> |
| #include <zephyr/arch/cpu.h> |
| |
| #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME |
| /* precompute CYC_PER_TICK at driver init to avoid runtime double divisions */ |
| static uint32_t cyc_per_tick; |
| #define CYC_PER_TICK cyc_per_tick |
| #else |
| #define CYC_PER_TICK (uint32_t)(sys_clock_hw_cycles_per_sec() \ |
| / CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
| #endif |
| |
| #if defined(CONFIG_GDBSTUB) |
| /* When interactively debugging, the cycle diff can overflow 32-bit variable */ |
| #define cycle_diff_t uint64_t |
| #else |
| /* the unsigned long cast limits divisors to native CPU register width */ |
| #define cycle_diff_t unsigned long |
| #endif |
| #define CYCLE_DIFF_MAX (~(cycle_diff_t)0) |
| |
| /* |
| * We have two constraints on the maximum number of cycles we can wait for. |
| * |
| * 1) sys_clock_announce() accepts at most INT32_MAX ticks. |
| * |
| * 2) The number of cycles between two reports must fit in a cycle_diff_t |
| * variable before converting it to ticks. |
| * |
| * Then: |
| * |
| * 3) Pick the smallest between (1) and (2). |
| * |
| * 4) Take into account some room for the unavoidable IRQ servicing latency. |
| * Let's use 3/4 of the max range. |
| * |
| * Finally let's add the LSB value to the result so to clear out a bunch of |
| * consecutive set bits coming from the original max values to produce a |
| * nicer literal for assembly generation. |
| */ |
| #define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK) |
| #define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX) |
| #define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2) |
| #define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4) |
| #define CYCLES_MAX_5 (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4)) |
| |
| #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME |
| /* precompute CYCLES_MAX at driver init to avoid runtime double divisions */ |
| static uint64_t cycles_max; |
| #define CYCLES_MAX cycles_max |
| #else |
| #define CYCLES_MAX CYCLES_MAX_5 |
| #endif |
| |
| static struct k_spinlock lock; |
| static uint64_t last_cycle; |
| static uint64_t last_tick; |
| static uint32_t last_elapsed; |
| |
| #if defined(CONFIG_TEST) |
| const int32_t z_sys_timer_irq_for_test = ARM_ARCH_TIMER_IRQ; |
| #endif |
| |
| static void arm_arch_timer_compare_isr(const void *arg) |
| { |
| ARG_UNUSED(arg); |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| #ifdef CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 |
| /* |
| * Workaround required for Cortex-A9 MPCore erratum 740657 |
| * comp. ARM Cortex-A9 processors Software Developers Errata Notice, |
| * ARM document ID032315. |
| */ |
| |
| if (!arm_arch_timer_get_int_status()) { |
| /* |
| * If the event flag is not set, this is a spurious interrupt. |
| * DO NOT modify the compare register's value, DO NOT announce |
| * elapsed ticks! |
| */ |
| k_spin_unlock(&lock, key); |
| return; |
| } |
| #endif /* CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 */ |
| |
| uint64_t curr_cycle = arm_arch_timer_count(); |
| uint64_t delta_cycles = curr_cycle - last_cycle; |
| uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK; |
| |
| last_cycle += (cycle_diff_t)delta_ticks * CYC_PER_TICK; |
| last_tick += delta_ticks; |
| last_elapsed = 0; |
| |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| uint64_t next_cycle = last_cycle + CYC_PER_TICK; |
| |
| arm_arch_timer_set_compare(next_cycle); |
| arm_arch_timer_set_irq_mask(false); |
| } else { |
| arm_arch_timer_set_irq_mask(true); |
| #ifdef CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 |
| /* |
| * In tickless mode, the compare register is normally not |
| * updated from within the ISR. Yet, to work around the timer's |
| * erratum, a new value *must* be written while the interrupt |
| * is being processed before the interrupt is acknowledged |
| * by the handling interrupt controller. |
| */ |
| arm_arch_timer_set_compare(~0ULL); |
| } |
| |
| /* |
| * Clear the event flag so that in case the erratum strikes (the timer's |
| * vector will still be indicated as pending by the GIC's pending register |
| * after this ISR has been executed) the error will be detected by the |
| * check performed upon entry of the ISR -> the event flag is not set, |
| * therefore, no actual hardware interrupt has occurred. |
| */ |
| arm_arch_timer_clear_int_status(); |
| #else |
| } |
| #endif /* CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 */ |
| |
| k_spin_unlock(&lock, key); |
| |
| sys_clock_announce(delta_ticks); |
| } |
| |
| void sys_clock_set_timeout(int32_t ticks, bool idle) |
| { |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return; |
| } |
| |
| if (idle && ticks == K_TICKS_FOREVER) { |
| return; |
| } |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint64_t next_cycle; |
| |
| if (ticks == K_TICKS_FOREVER) { |
| next_cycle = last_cycle + CYCLES_MAX; |
| } else { |
| next_cycle = (last_tick + last_elapsed + ticks) * CYC_PER_TICK; |
| if ((next_cycle - last_cycle) > CYCLES_MAX) { |
| next_cycle = last_cycle + CYCLES_MAX; |
| } |
| } |
| |
| arm_arch_timer_set_compare(next_cycle); |
| arm_arch_timer_set_irq_mask(false); |
| k_spin_unlock(&lock, key); |
| } |
| |
| uint32_t sys_clock_elapsed(void) |
| { |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return 0; |
| } |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint64_t curr_cycle = arm_arch_timer_count(); |
| uint64_t delta_cycles = curr_cycle - last_cycle; |
| uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK; |
| |
| last_elapsed = delta_ticks; |
| k_spin_unlock(&lock, key); |
| return delta_ticks; |
| } |
| |
| uint32_t sys_clock_cycle_get_32(void) |
| { |
| return (uint32_t)arm_arch_timer_count(); |
| } |
| |
| uint64_t sys_clock_cycle_get_64(void) |
| { |
| return arm_arch_timer_count(); |
| } |
| |
| #ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT |
| void arch_busy_wait(uint32_t usec_to_wait) |
| { |
| if (usec_to_wait == 0) { |
| return; |
| } |
| |
| uint64_t start_cycles = arm_arch_timer_count(); |
| |
| uint64_t cycles_to_wait = sys_clock_hw_cycles_per_sec() / USEC_PER_SEC * usec_to_wait; |
| |
| for (;;) { |
| uint64_t current_cycles = arm_arch_timer_count(); |
| |
| /* this handles the rollover on an unsigned 32-bit value */ |
| if ((current_cycles - start_cycles) >= cycles_to_wait) { |
| break; |
| } |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_SMP |
| void smp_timer_init(void) |
| { |
| /* |
| * set the initial status of timer0 of each secondary core |
| */ |
| arm_arch_timer_set_compare(last_cycle + CYC_PER_TICK); |
| arm_arch_timer_enable(true); |
| irq_enable(ARM_ARCH_TIMER_IRQ); |
| arm_arch_timer_set_irq_mask(false); |
| } |
| #endif |
| |
| static int sys_clock_driver_init(void) |
| { |
| |
| IRQ_CONNECT(ARM_ARCH_TIMER_IRQ, ARM_ARCH_TIMER_PRIO, |
| arm_arch_timer_compare_isr, NULL, ARM_ARCH_TIMER_FLAGS); |
| arm_arch_timer_init(); |
| #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME |
| cyc_per_tick = sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC; |
| cycles_max = CYCLES_MAX_5; |
| #endif |
| arm_arch_timer_enable(true); |
| last_tick = arm_arch_timer_count() / CYC_PER_TICK; |
| last_cycle = last_tick * CYC_PER_TICK; |
| arm_arch_timer_set_compare(last_cycle + CYC_PER_TICK); |
| irq_enable(ARM_ARCH_TIMER_IRQ); |
| arm_arch_timer_set_irq_mask(false); |
| |
| return 0; |
| } |
| |
| SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, |
| CONFIG_SYSTEM_CLOCK_INIT_PRIORITY); |