blob: 55f875a108585f8c1107d645e4bfffb261069566 [file] [log] [blame]
/*
* Copyright (c) 2018 Alexander Wachter
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <clock_control/stm32_clock_control.h>
#include <clock_control.h>
#include <misc/util.h>
#include <string.h>
#include <kernel.h>
#include <board.h>
#include <errno.h>
#include <stdbool.h>
#include "stm32_can.h"
#define SYS_LOG_LEVEL CONFIG_SYS_LOG_CAN_LEVEL
#include <logging/sys_log.h>
static void can_stm32_signal_tx_complete(struct can_mailbox *mb)
{
if (mb->tx_callback) {
mb->tx_callback(mb->error_flags);
} else {
k_sem_give(&mb->tx_int_sem);
}
}
static inline void can_stm32_get_msg_fifo(CAN_FIFOMailBox_TypeDef *mbox,
struct can_msg *msg)
{
if (mbox->RIR & CAN_RI0R_IDE) {
msg->ext_id = mbox->RIR >> CAN_RI0R_EXID_Pos;
msg->id_type = CAN_EXTENDED_IDENTIFIER;
} else {
msg->std_id = mbox->RIR >> CAN_RI0R_STID_Pos;
msg->id_type = CAN_STANDARD_IDENTIFIER;
}
msg->rtr = mbox->RIR & CAN_RI0R_RTR ? CAN_REMOTEREQUEST : CAN_DATAFRAME;
msg->dlc = mbox->RDTR & (CAN_RDT0R_DLC >> CAN_RDT0R_DLC_Pos);
msg->data_32[0] = mbox->RDLR;
msg->data_32[1] = mbox->RDHR;
}
static void can_stm32_isr(void *arg)
{
struct device *dev;
struct can_stm32_data *data;
const struct can_stm32_config *cfg;
CAN_TypeDef *can;
u32_t bus_off;
dev = (struct device *)arg;
data = DEV_DATA(dev);
cfg = DEV_CFG(dev);
can = cfg->can;
bus_off = can->ESR & CAN_ESR_BOFF;
if ((can->TSR & CAN_TSR_RQCP0) | bus_off) {
data->mb0.error_flags =
can->TSR & CAN_TSR_TXOK0 ? CAN_TX_OK :
can->TSR & CAN_TSR_TERR0 ? CAN_TX_ERR :
can->TSR & CAN_TSR_ALST0 ? CAN_TX_ARB_LOST :
bus_off ? CAN_TX_BUS_OFF :
CAN_TX_UNKNOWN;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP0;
can_stm32_signal_tx_complete(&data->mb0);
}
if ((can->TSR & CAN_TSR_RQCP1) | bus_off) {
data->mb0.error_flags =
can->TSR & CAN_TSR_TXOK1 ? CAN_TX_OK :
can->TSR & CAN_TSR_TERR1 ? CAN_TX_ERR :
can->TSR & CAN_TSR_ALST1 ? CAN_TX_ARB_LOST :
bus_off ? CAN_TX_BUS_OFF :
CAN_TX_UNKNOWN;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP1;
can_stm32_signal_tx_complete(&data->mb1);
}
if ((can->TSR & CAN_TSR_RQCP2) | bus_off) {
data->mb2.error_flags =
can->TSR & CAN_TSR_TXOK2 ? CAN_TX_OK :
can->TSR & CAN_TSR_TERR2 ? CAN_TX_ERR :
can->TSR & CAN_TSR_ALST2 ? CAN_TX_ARB_LOST :
bus_off ? CAN_TX_BUS_OFF :
CAN_TX_UNKNOWN;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP2;
can_stm32_signal_tx_complete(&data->mb2);
}
if (can->TSR & CAN_TSR_TME) {
k_sem_give(&data->tx_int_sem);
}
while (can->RF0R & CAN_RF0R_FMP0) {
CAN_FIFOMailBox_TypeDef *mbox;
int filter_match_index;
struct can_msg msg;
mbox = &can->sFIFOMailBox[0];
filter_match_index = ((mbox->RDTR & CAN_RDT0R_FMI)
>> CAN_RDT0R_FMI_Pos);
if (filter_match_index >= CONFIG_CAN_MAX_FILTER) {
break;
}
SYS_LOG_DBG("Message on filter index %d", filter_match_index);
can_stm32_get_msg_fifo(mbox, &msg);
if (data->rx_response[filter_match_index]) {
if (data->response_type & (1ULL << filter_match_index)) {
struct k_msgq *msg_q =
data->rx_response[filter_match_index];
k_msgq_put(msg_q, &msg, K_NO_WAIT);
} else {
can_rx_callback_t callback =
data->rx_response[filter_match_index];
callback(&msg);
}
}
/* Release message */
can->RF0R |= CAN_RF0R_RFOM0;
}
}
void HAL_CAN_MspInit(CAN_HandleTypeDef *hcan)
{
ARG_UNUSED(hcan);
}
int can_stm32_runtime_configure(struct device *dev, enum can_mode mode,
u32_t bitrate)
{
CAN_HandleTypeDef hcan;
const struct can_stm32_config *cfg = DEV_CFG(dev);
CAN_TypeDef *can = cfg->can;
struct device *clock;
u32_t clock_rate;
u32_t prescaler;
u32_t hal_mode;
int hal_ret;
u32_t bs1;
u32_t bs2;
u32_t swj;
clock = device_get_binding(STM32_CLOCK_CONTROL_NAME);
__ASSERT_NO_MSG(clock);
hcan.Instance = can;
clock_control_get_rate(clock, (clock_control_subsys_t *) &cfg->pclken,
&clock_rate);
if (!bitrate) {
bitrate = cfg->bus_speed;
}
prescaler = clock_rate / (BIT_SEG_LENGTH(cfg) * bitrate);
if (prescaler == 0 || prescaler > 1024) {
SYS_LOG_ERR("HAL_CAN_Init failed: prescaler > max (%d > 1024)",
prescaler);
return -EINVAL;
}
if (clock_rate % (BIT_SEG_LENGTH(cfg) * bitrate)) {
SYS_LOG_ERR("Prescaler is not a natural number! "
"prescaler = clock_rate / ((PROP_SEG1 + SEG2 + 1)"
" * bus_speed); "
"prescaler = %d / ((%d + %d + 1) * %d)",
clock_rate,
cfg->prop_bs1,
cfg->bs2,
bitrate);
}
__ASSERT(cfg->swj <= 0x03, "SWJ maximum is 3");
__ASSERT(cfg->prop_bs1 <= 0x0F, "PROP_BS1 maximum is 15");
__ASSERT(cfg->bs2 <= 0x07, "BS2 maximum is 7");
bs1 = ((cfg->prop_bs1 & 0x0F) - 1) << CAN_BTR_TS1_Pos;
bs2 = ((cfg->bs2 & 0x07) - 1) << CAN_BTR_TS2_Pos;
swj = ((cfg->swj & 0x07) - 1) << CAN_BTR_SJW_Pos;
hal_mode = mode == CAN_NORMAL_MODE ? CAN_MODE_NORMAL :
mode == CAN_LOOPBACK_MODE ? CAN_MODE_LOOPBACK :
mode == CAN_SILENT_MODE ? CAN_MODE_SILENT :
CAN_MODE_SILENT_LOOPBACK;
hcan.Init.TTCM = DISABLE;
hcan.Init.ABOM = DISABLE;
hcan.Init.AWUM = DISABLE;
hcan.Init.NART = DISABLE;
hcan.Init.RFLM = DISABLE;
hcan.Init.TXFP = DISABLE;
hcan.Init.Mode = hal_mode;
hcan.Init.SJW = swj;
hcan.Init.BS1 = bs1;
hcan.Init.BS2 = bs2;
hcan.Init.Prescaler = prescaler;
hal_ret = HAL_CAN_Init(&hcan);
if (hal_ret != HAL_OK) {
SYS_LOG_ERR("HAL_CAN_Init failed: %d", hal_ret);
return -EIO;
}
SYS_LOG_DBG("Runtime configure of %s done", dev->config->name);
return 0;
}
static int can_stm32_init(struct device *dev)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->can;
struct device *clock;
int ret;
k_mutex_init(&data->tx_mutex);
k_mutex_init(&data->set_filter_mutex);
k_sem_init(&data->tx_int_sem, 0, 1);
k_sem_init(&data->mb0.tx_int_sem, 0, 1);
k_sem_init(&data->mb1.tx_int_sem, 0, 1);
k_sem_init(&data->mb2.tx_int_sem, 0, 1);
data->mb0.tx_callback = NULL;
data->mb1.tx_callback = NULL;
data->mb2.tx_callback = NULL;
data->filter_usage = (1ULL << CAN_MAX_NUMBER_OF_FILTES) - 1ULL;
memset(data->rx_response, 0, sizeof(void *) * CONFIG_CAN_MAX_FILTER);
data->response_type = 0;
clock = device_get_binding(STM32_CLOCK_CONTROL_NAME);
__ASSERT_NO_MSG(clock);
ret = clock_control_on(clock, (clock_control_subsys_t *) &cfg->pclken);
if (ret != 0) {
SYS_LOG_ERR("HAL_CAN_Init clock control on failed: %d", ret);
return -EIO;
}
ret = can_stm32_runtime_configure(dev, CAN_NORMAL_MODE, 0);
if (ret) {
return ret;
}
cfg->config_irq(can);
can->IER |= CAN_IT_TME;
SYS_LOG_INF("Init of %s done", dev->config->name);
return 0;
}
int can_stm32_send(struct device *dev, struct can_msg *msg, s32_t timeout,
can_tx_callback_t callback)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->can;
u32_t transmit_status_register = can->TSR;
CAN_TxMailBox_TypeDef *mailbox = NULL;
struct k_mutex *tx_mutex = &data->tx_mutex;
struct can_mailbox *mb = NULL;
SYS_LOG_DBG("Sending %d bytes on %s. "
"Id: 0x%x, "
"ID type: %s, "
"Remote Frame: %s"
, msg->dlc, dev->config->name
, msg->id_type == CAN_STANDARD_IDENTIFIER ?
msg->std_id : msg->ext_id
, msg->id_type == CAN_STANDARD_IDENTIFIER ?
"standard" : "extended"
, msg->rtr == CAN_DATAFRAME ? "no" : "yes");
__ASSERT(msg->dlc == 0 || msg->data != NULL, "Dataptr is null");
__ASSERT(msg->dlc <= CAN_MAX_DLC, "DLC > 8");
if (can->ESR & CAN_ESR_BOFF) {
return CAN_TX_BUS_OFF;
}
k_mutex_lock(tx_mutex, K_FOREVER);
while (!(transmit_status_register & CAN_TSR_TME)) {
k_mutex_unlock(tx_mutex);
SYS_LOG_DBG("Transmit buffer full. Wait with timeout (%dms)",
timeout);
if (k_sem_take(&data->tx_int_sem, timeout) == -EAGAIN) {
return CAN_TIMEOUT;
}
k_mutex_lock(tx_mutex, K_FOREVER);
transmit_status_register = can->TSR;
}
if (transmit_status_register & CAN_TSR_TME0) {
SYS_LOG_DBG("Using mailbox 0");
mailbox = &can->sTxMailBox[CAN_TXMAILBOX_0];
mb = &(data->mb0);
} else if (transmit_status_register & CAN_TSR_TME1) {
SYS_LOG_DBG("Using mailbox 1");
mailbox = &can->sTxMailBox[CAN_TXMAILBOX_1];
mb = &data->mb1;
} else if (transmit_status_register & CAN_TSR_TME2) {
SYS_LOG_DBG("Using mailbox 2");
mailbox = &can->sTxMailBox[CAN_TXMAILBOX_2];
mb = &data->mb2;
}
mb->tx_callback = callback;
/* mailbix identifier register setup */
mailbox->TIR &= CAN_TI0R_TXRQ;
if (msg->id_type == CAN_STANDARD_IDENTIFIER) {
mailbox->TIR |= (msg->std_id << CAN_TI0R_STID_Pos);
} else {
mailbox->TIR |= (msg->ext_id << CAN_TI0R_EXID_Pos)
| CAN_TI0R_IDE;
}
if (msg->rtr == CAN_REMOTEREQUEST) {
mailbox->TIR |= CAN_TI1R_RTR;
}
mailbox->TDTR = (mailbox->TDTR & ~CAN_TDT1R_DLC) |
((msg->dlc & 0xF) << CAN_TDT1R_DLC_Pos);
mailbox->TDLR = msg->data_32[0];
mailbox->TDHR = msg->data_32[1];
mailbox->TIR |= CAN_TI0R_TXRQ;
k_mutex_unlock(tx_mutex);
if (callback == NULL) {
k_sem_reset(&mb->tx_int_sem);
k_sem_take(&mb->tx_int_sem, K_FOREVER);
return mb->error_flags;
}
return 0;
}
static int can_stm32_shift_arr(void **arr, int start, int count)
{
void **start_ptr = arr + start;
size_t cnt;
if (start > CONFIG_CAN_MAX_FILTER) {
return CAN_NO_FREE_FILTER;
}
if (count > 0) {
void *move_dest;
if ((start + count) >= CONFIG_CAN_MAX_FILTER ||
arr[CONFIG_CAN_MAX_FILTER - 1 - count] != NULL) {
return CAN_NO_FREE_FILTER;
}
cnt = (CONFIG_CAN_MAX_FILTER - start - count) * sizeof(void *);
move_dest = start_ptr + count;
memmove(move_dest, start_ptr, cnt);
memset(start_ptr, 0, count * sizeof(void *));
} else if (count < 0) {
count = -count;
if (start - count < 0) {
return CAN_NO_FREE_FILTER;
}
cnt = (CONFIG_CAN_MAX_FILTER - start) * sizeof(void *);
memmove(start_ptr - count, start_ptr, cnt);
memset(arr + CONFIG_CAN_MAX_FILTER - count, 0,
count * sizeof(void *));
}
return 0;
}
static inline void can_stm32_shift_bits(u64_t *bits, int start, int count)
{
u64_t mask_right = (UINT64_MAX >> start);
if (count > 0) {
*bits = (*bits & ~mask_right) | ((*bits & mask_right) << count);
} else if (count < 0) {
u64_t mask_left;
count = -count;
mask_left = ~(UINT64_MAX >> (start - count));
*bits = (*bits & mask_left) | ((*bits & mask_right) >> count);
}
}
static int can_calc_filter_index(int filter_nr, u32_t mode_reg, u32_t scale_reg)
{
int filter_bank = filter_nr / 4;
int cnt = 0;
u32_t mode_masked;
u32_t scale_masked;
/*count filters in the banks before */
for (int i = 0; i < filter_bank; i++) {
mode_masked = mode_reg & (1U << i);
scale_masked = scale_reg & (1U << i);
cnt += !scale_masked && mode_masked ? 4 :
scale_masked && !mode_masked ? 1 :
2;
}
/* plus the filters in the same bank */
mode_masked = mode_reg & (1U << filter_bank);
scale_masked = scale_reg & (1U << filter_bank);
cnt += (!scale_masked && mode_masked) ? filter_nr & 0x03 :
(filter_nr & 0x03) >> 1;
return cnt;
}
enum can_filter_type can_stm32_get_filter_type(u32_t bank_bit, u32_t mode_reg,
u32_t scale_reg)
{
u32_t mode_masked = mode_reg & bank_bit;
u32_t scale_masked = scale_reg & bank_bit;
enum can_filter_type type =
!scale_masked && mode_masked ? CAN_FILTER_STANDARD :
!scale_masked && !mode_masked ? CAN_FILTER_STANDARD_MASKED :
scale_masked && mode_masked ? CAN_FILTER_EXTENDED :
CAN_FILTER_EXTENDED_MASKED;
return type;
}
static void can_stm32_set_filter_bank(int filter_nr,
CAN_FilterRegister_TypeDef *filter_reg,
enum can_filter_type filter_type,
u32_t id, u32_t mask)
{
switch (filter_type) {
case CAN_FILTER_STANDARD:
switch (filter_nr & 0x03) {
case 0:
filter_reg->FR1 = (filter_reg->FR1 & 0xFFFF0000) | id;
break;
case 1:
filter_reg->FR1 = (filter_reg->FR1 & 0x0000FFFF)
| (id << 16);
break;
case 2:
filter_reg->FR2 = (filter_reg->FR2 & 0xFFFF0000) | id;
break;
case 3:
filter_reg->FR2 = (filter_reg->FR2 & 0x0000FFFF)
| (id << 16);
break;
}
break;
case CAN_FILTER_STANDARD_MASKED:
switch (filter_nr & 0x02) {
case 0:
filter_reg->FR1 = id | (mask << 16);
break;
case 2:
filter_reg->FR2 = id | (mask << 16);
break;
}
break;
case CAN_FILTER_EXTENDED:
switch (filter_nr & 0x02) {
case 0:
filter_reg->FR1 = id;
break;
case 2:
filter_reg->FR2 = id;
break;
}
break;
case CAN_FILTER_EXTENDED_MASKED:
filter_reg->FR1 = id;
filter_reg->FR2 = mask;
break;
}
}
static inline
int can_stm32_calc_shift_width(enum can_filter_type new_filter_type,
enum can_filter_type old_filter_type)
{
switch (new_filter_type) {
case CAN_FILTER_STANDARD:
return old_filter_type == CAN_FILTER_EXTENDED_MASKED ? 3 : 1;
case CAN_FILTER_STANDARD_MASKED:
return old_filter_type == CAN_FILTER_STANDARD ? -2 :
old_filter_type == CAN_FILTER_EXTENDED_MASKED ? 1 :
0;
case CAN_FILTER_EXTENDED:
return old_filter_type == CAN_FILTER_STANDARD ? -2 :
old_filter_type == CAN_FILTER_EXTENDED_MASKED ? 1 :
0;
case CAN_FILTER_EXTENDED_MASKED:
return old_filter_type == CAN_FILTER_STANDARD ? -3 : -1;
}
return 0;
}
static inline void can_stm32_set_mode_scale(enum can_filter_type filter_type,
u32_t *mode_reg, u32_t *scale_reg,
u32_t bank_bit)
{
switch (filter_type) {
case CAN_FILTER_STANDARD:
*mode_reg |= bank_bit;
*scale_reg &= ~bank_bit;
break;
case CAN_FILTER_STANDARD_MASKED:
*mode_reg &= ~bank_bit;
*scale_reg &= ~bank_bit;
break;
case CAN_FILTER_EXTENDED:
*mode_reg |= bank_bit;
*scale_reg |= bank_bit;
break;
case CAN_FILTER_EXTENDED_MASKED:
*mode_reg &= ~bank_bit;
*scale_reg |= bank_bit;
break;
}
}
static inline int can_stm32_set_filter(const struct can_filter *filter,
struct can_stm32_data *device_data,
CAN_TypeDef *can,
int *filter_index)
{
u32_t mask = 0;
u32_t id = 0;
int filter_nr = 0;
int filter_index_tmp = CAN_NO_FREE_FILTER;
int bank_nr;
u32_t bank_bit;
int register_demand;
enum can_filter_type filter_type;
enum can_filter_type bank_mode;
if (filter->id_type == CAN_STANDARD_IDENTIFIER) {
id = (filter->std_id << CAN_FIRX_STD_ID_POS)
| (filter->rtr << CAN_FIRX_STD_RTR_POS);
if (filter->std_id_mask == CAN_STD_ID_MASK && filter->rtr_mask) {
filter_type = CAN_FILTER_STANDARD;
register_demand = 1;
} else {
filter_type = CAN_FILTER_STANDARD_MASKED;
register_demand = 2;
mask = (filter->std_id_mask << CAN_FIRX_STD_ID_POS)
| (filter->rtr_mask << CAN_FIRX_STD_RTR_POS)
| (1U << CAN_FIRX_STD_IDE_POS);
}
} else {
id = (filter->ext_id << CAN_FIRX_EXT_EXT_ID_POS)
| (filter->rtr << CAN_FIRX_EXT_RTR_POS)
| (1U << CAN_FIRX_EXT_IDE_POS);
if (filter->ext_id_mask == CAN_EXT_ID_MASK && filter->rtr_mask) {
filter_type = CAN_FILTER_EXTENDED;
register_demand = 2;
} else {
filter_type = CAN_FILTER_EXTENDED_MASKED;
register_demand = 4;
mask = (filter->ext_id_mask << CAN_FIRX_EXT_EXT_ID_POS)
| (filter->rtr_mask << CAN_FIRX_EXT_RTR_POS)
| (1U << CAN_FIRX_EXT_IDE_POS);
}
}
SYS_LOG_DBG("Setting filter ID: 0x%x, mask: 0x%x", filter->ext_id,
filter->ext_id_mask);
SYS_LOG_DBG("Filter type: %s ID %s mask (%d)",
(filter_type == CAN_FILTER_STANDARD ||
filter_type == CAN_FILTER_STANDARD_MASKED) ?
"standard" : "extended",
(filter_type == CAN_FILTER_STANDARD_MASKED ||
filter_type == CAN_FILTER_EXTENDED_MASKED) ?
"with" : "without",
filter_type);
do {
u64_t usage_shifted = (device_data->filter_usage >> filter_nr);
u8_t usage_demand_mask = (1U << register_demand) - 1;
bool bank_is_empty;
bank_nr = filter_nr / 4;
bank_bit = (1U << bank_nr);
bank_mode = can_stm32_get_filter_type(bank_bit, can->FM1R,
can->FS1R);
bank_is_empty = CAN_BANK_IS_EMPTY(device_data->filter_usage,
bank_nr);
if ((usage_shifted & usage_demand_mask) == usage_demand_mask) {
if (bank_mode == filter_type || bank_is_empty) {
device_data->filter_usage &=
~((u64_t)usage_demand_mask << filter_nr);
break;
} else {
/* Filter Bank has unsuitable configuration */
filter_nr = (bank_nr + 1) * 4;
}
} else {
filter_nr += register_demand;
}
if (!usage_shifted) {
SYS_LOG_INF("No free filter bank found");
return CAN_NO_FREE_FILTER;
}
} while (filter_nr < CAN_MAX_NUMBER_OF_FILTES);
/* set the filter init mode */
can->FMR |= CAN_FMR_FINIT;
can->FA1R &= ~bank_bit;
/* TODO fifo balancing */
if (filter_type != bank_mode) {
int shift_width;
int res;
u32_t mode_reg = can->FM1R;
u32_t scale_reg = can->FS1R;
can_stm32_set_mode_scale(filter_type, &mode_reg, &scale_reg,
bank_bit);
shift_width = can_stm32_calc_shift_width(filter_type,
bank_mode);
filter_index_tmp = can_calc_filter_index(filter_nr, mode_reg,
scale_reg);
res = can_stm32_shift_arr(device_data->rx_response,
filter_index_tmp + 1, shift_width);
if (filter_index_tmp >= CAN_MAX_NUMBER_OF_FILTES || res) {
SYS_LOG_INF("No space for a new filter!");
filter_nr = CAN_NO_FREE_FILTER;
goto done;
}
can_stm32_shift_bits(&device_data->response_type,
filter_index_tmp + 1, shift_width);
can->FM1R = mode_reg;
can->FS1R = scale_reg;
} else {
filter_index_tmp = can_calc_filter_index(filter_nr, can->FM1R,
can->FS1R);
if (filter_index_tmp >= CAN_MAX_NUMBER_OF_FILTES) {
filter_nr = CAN_NO_FREE_FILTER;
goto done;
}
}
can_stm32_set_filter_bank(filter_nr, &can->sFilterRegister[bank_nr],
filter_type, id, mask);
done:
can->FA1R |= bank_bit;
can->FMR &= ~(CAN_FMR_FINIT);
SYS_LOG_DBG("Filter set! Filter number: %d (index %d)",
filter_nr, filter_index_tmp);
*filter_index = filter_index_tmp;
return filter_nr;
}
static inline int can_stm32_attach(struct device *dev, void *response_ptr,
const struct can_filter *filter,
int *filter_index)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->can;
int filter_index_tmp = 0;
int filter_nr;
k_mutex_lock(&data->set_filter_mutex, K_FOREVER);
filter_nr = can_stm32_set_filter(filter, data, can, &filter_index_tmp);
if (filter_nr != CAN_NO_FREE_FILTER) {
data->rx_response[filter_index_tmp] = response_ptr;
}
k_mutex_unlock(&data->set_filter_mutex);
*filter_index = filter_index_tmp;
return filter_nr;
}
int can_stm32_attach_msgq(struct device *dev, struct k_msgq *msgq,
const struct can_filter *filter)
{
int filter_nr;
int filter_index;
struct can_stm32_data *data = DEV_DATA(dev);
filter_nr = can_stm32_attach(dev, msgq, filter, &filter_index);
data->response_type |= (1ULL << filter_index);
return filter_nr;
}
int can_stm32_attach_isr(struct device *dev, can_rx_callback_t isr,
const struct can_filter *filter)
{
struct can_stm32_data *data = DEV_DATA(dev);
int filter_nr;
int filter_index;
filter_nr = can_stm32_attach(dev, isr, filter, &filter_index);
data->response_type &= ~(1ULL << filter_index);
return filter_nr;
}
void can_stm32_detach(struct device *dev, int filter_nr)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->can;
int bank_nr;
int filter_index;
u32_t bank_bit;
u32_t mode_reg;
u32_t scale_reg;
enum can_filter_type type;
u32_t reset_mask;
__ASSERT_NO_MSG(filter_nr >= 0 && filter_nr < CAN_MAX_NUMBER_OF_FILTES);
k_mutex_lock(&data->set_filter_mutex, K_FOREVER);
bank_nr = filter_nr / 4;
bank_bit = (1U << bank_nr);
mode_reg = can->FM1R;
scale_reg = can->FS1R;
filter_index = can_calc_filter_index(filter_nr, mode_reg, scale_reg);
type = can_stm32_get_filter_type(bank_bit, mode_reg, scale_reg);
SYS_LOG_DBG("Detatch filter number %d (index %d), type %d", filter_nr,
filter_index,
type);
reset_mask = (type == CAN_FILTER_STANDARD) ? 0x01 :
(type == CAN_FILTER_EXTENDED_MASKED) ? 0x0F :
0x03;
reset_mask = reset_mask << filter_nr;
data->filter_usage |= reset_mask;
can->FMR |= CAN_FMR_FINIT;
can->FA1R &= ~bank_bit;
can_stm32_set_filter_bank(filter_nr, &can->sFilterRegister[bank_nr],
type, 0, 0xFFFFFFFF);
if (!CAN_BANK_IS_EMPTY(data->filter_usage, bank_nr)) {
can->FA1R |= bank_bit;
} else {
SYS_LOG_DBG("Bank number %d is empty -> deakivate", bank_nr);
}
can->FMR &= ~(CAN_FMR_FINIT);
data->rx_response[filter_index] = NULL;
k_mutex_unlock(&data->set_filter_mutex);
}
static const struct can_driver_api can_api_funcs = {
.configure = can_stm32_runtime_configure,
.send = can_stm32_send,
.attach_msgq = can_stm32_attach_msgq,
.attach_isr = can_stm32_attach_isr,
.detach = can_stm32_detach
};
#ifdef CONFIG_CAN_1
static void config_can_1_irq(CAN_TypeDef *can);
static const struct can_stm32_config can_stm32_cfg_1 = {
.can = (CAN_TypeDef *)CONFIG_CAN_1_BASE_ADDRESS,
.bus_speed = CONFIG_CAN_1_BUS_SPEED,
.swj = CONFIG_CAN_1_SJW,
.prop_bs1 = CONFIG_CAN_1_PROP_SEG_PHASE_SEG1,
.bs2 = CONFIG_CAN_1_PHASE_SEG2,
.pclken = {
.enr = RCC_APB1ENR_CANEN,
.bus = STM32_CLOCK_BUS_APB1,
},
.config_irq = config_can_1_irq
};
static struct can_stm32_data can_stm32_dev_data_1;
DEVICE_AND_API_INIT(can_stm32_1, CONFIG_CAN_1_NAME, &can_stm32_init,
&can_stm32_dev_data_1, &can_stm32_cfg_1,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&can_api_funcs);
static void config_can_1_irq(CAN_TypeDef *can)
{
SYS_LOG_DBG("Enable CAN1 IRQ");
IRQ_CONNECT(CONFIG_CAN_1_IRQ, CONFIG_CAN_1_IRQ_PRIORITY, can_stm32_isr,
DEVICE_GET(can_stm32_1), 0);
irq_enable(CONFIG_CAN_1_IRQ);
can->IER |= CAN_IT_TME | CAN_IT_ERR | CAN_IT_FMP0 | CAN_IT_FMP1;
}
#endif /*CONFIG_CAN_1*/