blob: c3eb4938addedef2121b0cdcac2ae114a5a4a853 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr.h>
#include <device.h>
#include <init.h>
#include <ztest.h>
#include <sys/printk.h>
#include "abstract_driver.h"
#define DUMMY_PORT_1 "dummy"
#define DUMMY_PORT_2 "dummy_driver"
#define BAD_DRIVER "bad_driver"
#define MY_DRIVER_A "my_driver_A"
#define MY_DRIVER_B "my_driver_B"
extern void test_mmio_multiple(void);
extern void test_mmio_toplevel(void);
extern void test_mmio_single(void);
extern void test_mmio_device_map(void);
/**
* @brief Test cases to verify device objects
*
* Verify zephyr device driver apis with different device types
*
* @defgroup kernel_device_tests Device
*
* @ingroup all_tests
*
* @{
*/
/**
* @brief Test device object binding
*
* Validates device binding for an existing and a non-existing device object.
* It creates a dummy_driver device object with basic init and configuration
* information and validates its binding.
*
* Validates three kinds situations of driver object:
* 1. A non-existing device object.
* 2. An existing device object with basic init and configuration information.
* 3. A failed init device object.
*
* @ingroup kernel_device_tests
*
* @see device_get_binding(), device_busy_set(), device_busy_clear(),
* DEVICE_DEFINE()
*/
void test_dummy_device(void)
{
const struct device *dev;
/* Validates device binding for a non-existing device object */
dev = device_get_binding(DUMMY_PORT_1);
zassert_equal(dev, NULL, NULL);
/* Validates device binding for an existing device object */
dev = device_get_binding(DUMMY_PORT_2);
zassert_false((dev == NULL), NULL);
device_busy_set(dev);
device_busy_clear(dev);
/* device_get_binding() returns false for device object
* with failed init.
*/
dev = device_get_binding(BAD_DRIVER);
zassert_true((dev == NULL), NULL);
}
/**
* @brief Test device binding for existing device
*
* Validates device binding for an existing device object.
*
* @see device_get_binding(), DEVICE_DEFINE()
*/
static void test_dynamic_name(void)
{
const struct device *mux;
char name[sizeof(DUMMY_PORT_2)];
snprintk(name, sizeof(name), "%s", DUMMY_PORT_2);
mux = device_get_binding(name);
zassert_true(mux != NULL, NULL);
}
/**
* @brief Test device binding for non-existing device
*
* Validates binding of a random device driver(non-defined driver) named
* "ANOTHER_BOGUS_NAME".
*
* @see device_get_binding(), DEVICE_DEFINE()
*/
static void test_bogus_dynamic_name(void)
{
const struct device *mux;
char name[64];
snprintk(name, sizeof(name), "ANOTHER_BOGUS_NAME");
mux = device_get_binding(name);
zassert_true(mux == NULL, NULL);
}
/**
* @brief Test device binding for passing null name
*
* Validates device binding for device object when given dynamic name is null.
*
* @see device_get_binding(), DEVICE_DEFINE()
*/
static void test_null_dynamic_name(void)
{
#if CONFIG_USERSPACE
const struct device *mux;
char *drv_name = NULL;
mux = device_get_binding(drv_name);
zassert_equal(mux, 0, NULL);
#else
ztest_test_skip();
#endif
}
static struct init_record {
bool pre_kernel;
bool is_in_isr;
bool is_pre_kernel;
} init_records[4];
static struct init_record *rp = init_records;
static int add_init_record(bool pre_kernel)
{
rp->pre_kernel = pre_kernel;
rp->is_pre_kernel = k_is_pre_kernel();
rp->is_in_isr = k_is_in_isr();
++rp;
return 0;
}
static int pre1_fn(const struct device *dev)
{
return add_init_record(true);
}
static int pre2_fn(const struct device *dev)
{
return add_init_record(true);
}
static int post_fn(const struct device *dev)
{
return add_init_record(false);
}
static int app_fn(const struct device *dev)
{
return add_init_record(false);
}
SYS_INIT(pre1_fn, PRE_KERNEL_1, 0);
SYS_INIT(pre2_fn, PRE_KERNEL_2, 0);
SYS_INIT(post_fn, POST_KERNEL, 0);
SYS_INIT(app_fn, APPLICATION, 0);
/* This is an error case which driver initializes failed in SYS_INIT .*/
static int null_driver_init(const struct device *dev)
{
ARG_UNUSED(dev);
return -EINVAL;
}
SYS_INIT(null_driver_init, POST_KERNEL, 0);
/**
* @brief Test detection of initialization before kernel services available.
*
* Confirms check is correct.
*
* @see k_is_pre_kernel()
*/
void test_pre_kernel_detection(void)
{
struct init_record *rpe = rp;
zassert_equal(rp - init_records, 4U,
"bad record count");
rp = init_records;
while ((rp < rpe) && rp->pre_kernel) {
zassert_equal(rp->is_in_isr, false,
"rec %zu isr", rp - init_records);
zassert_equal(rp->is_pre_kernel, true,
"rec %zu pre-kernel", rp - init_records);
++rp;
}
zassert_equal(rp - init_records, 2U,
"bad pre-kernel count");
while (rp < rpe) {
zassert_equal(rp->is_in_isr, false,
"rec %zu isr", rp - init_records);
zassert_equal(rp->is_pre_kernel, false,
"rec %zu post-kernel", rp - init_records);
++rp;
}
}
#ifdef CONFIG_PM_DEVICE
/**
* @brief Test system device list query API with PM enabled.
*
* It queries the list of devices in the system, used to suspend or
* resume the devices in PM applications.
*
* @see device_list_get()
*/
static void test_build_suspend_device_list(void)
{
struct device const *devices;
size_t devcount = z_device_get_all_static(&devices);
zassert_false((devcount == 0), NULL);
}
/**
* @brief Test APIs to enable and disable automatic idle power management
*
* @details Test the API enable and disable, cause we do not implement our PM
* API here, it will use the default function to handle power status. So when
* we try to get power state by device_get_power_state(), it will default
* return power state zero. And we check it.
*
* @ingroup kernel_device_tests
*/
static void test_enable_and_disable_automatic_idle_pm(void)
{
const struct device *dev;
int ret;
unsigned int device_power_state = 0;
dev = device_get_binding(DUMMY_PORT_2);
zassert_false((dev == NULL), NULL);
/* check its status at first */
/* for cases that cannot run IDLE power, we skip it now */
ret = device_get_power_state(dev, &device_power_state);
if (ret == -ENOTSUP) {
TC_PRINT("Power management not supported on device");
ztest_test_skip();
return;
}
zassert_true((ret == 0),
"Unable to get active state to device");
/* enable automatic idle PM and check its status */
device_pm_enable(dev);
zassert_not_null((dev->pm), "No device pm");
zassert_true((dev->pm->enable), "Pm is not enable");
/* disable automatic idle PM and check its status */
device_pm_disable(dev);
zassert_false((dev->pm->enable), "Pm shall not be enable");
}
/**
* @brief Test device binding for existing device with PM enabled.
*
* Validates device binding for an existing device object with Power management
* enabled. It also checks if the device is in the middle of a transaction,
* sets/clears busy status and validates status again.
*
* @see device_get_binding(), device_busy_set(), device_busy_clear(),
* device_busy_check(), device_any_busy_check(),
* device_list_get(), device_set_power_state()
*/
void test_dummy_device_pm(void)
{
const struct device *dev;
int busy, ret;
unsigned int device_power_state = 0;
dev = device_get_binding(DUMMY_PORT_2);
zassert_false((dev == NULL), NULL);
busy = device_any_busy_check();
zassert_true((busy == 0), NULL);
/* Set device state to BUSY*/
device_busy_set(dev);
busy = device_any_busy_check();
zassert_false((busy == 0), NULL);
busy = device_busy_check(dev);
zassert_false((busy == 0), NULL);
/* Clear device BUSY state*/
device_busy_clear(dev);
busy = device_busy_check(dev);
zassert_true((busy == 0), NULL);
test_build_suspend_device_list();
/* Set device state to DEVICE_PM_ACTIVE_STATE */
ret = device_set_power_state(dev, DEVICE_PM_ACTIVE_STATE, NULL, NULL);
if (ret == -ENOTSUP) {
TC_PRINT("Power management not supported on device");
ztest_test_skip();
return;
}
zassert_true((ret == 0),
"Unable to set active state to device");
ret = device_get_power_state(dev, &device_power_state);
zassert_true((ret == 0),
"Unable to get active state to device");
zassert_true((device_power_state == DEVICE_PM_ACTIVE_STATE),
"Error power status");
/* Set device state to DEVICE_PM_FORCE_SUSPEND_STATE */
ret = device_set_power_state(dev,
DEVICE_PM_FORCE_SUSPEND_STATE, NULL, NULL);
zassert_true((ret == 0), "Unable to force suspend device");
ret = device_get_power_state(dev, &device_power_state);
zassert_true((ret == 0),
"Unable to get suspend state to device");
zassert_true((device_power_state == DEVICE_PM_ACTIVE_STATE),
"Error power status");
}
#else
static void test_enable_and_disable_automatic_idle_pm(void)
{
ztest_test_skip();
}
static void test_build_suspend_device_list(void)
{
ztest_test_skip();
}
void test_dummy_device_pm(void)
{
ztest_test_skip();
}
#endif
/* this is for storing sequence during initializtion */
extern int init_level_sequence[4];
extern int init_priority_sequence[4];
extern unsigned int seq_level_cnt;
extern unsigned int seq_priority_cnt;
/**
* @brief Test initialization level for device driver instances
*
* @details After the defined device instances have initialized, we check the
* sequence number that each driver stored during initialization. If the
* sequence of initial level stored is corresponding with our expectation, it
* means assigning the level for driver instance works.
*
* @ingroup kernel_device_tests
*/
void test_device_init_level(void)
{
bool seq_correct = true;
/* we check if the stored executing sequence for different level is
* correct, and it should be 1, 2, 3, 4
*/
for (int i = 0; i < 4; i++) {
if (init_level_sequence[i] != (i+1))
seq_correct = false;
}
zassert_true((seq_correct == true),
"init sequence is not correct");
}
/**
* @brief Test initialization priorities for device driver instances
*
* details After the defined device instances have initialized, we check the
* sequence number that each driver stored during initialization. If the
* sequence of initial priority stored is corresponding with our expectation, it
* means assigning the priority for driver instance works.
*
* @ingroup kernel_device_tests
*/
void test_device_init_priority(void)
{
bool sequence_correct = true;
/* we check if the stored pexecuting sequence for priority is correct,
* and it should be 1, 2, 3, 4
*/
for (int i = 0; i < 4; i++) {
if (init_priority_sequence[i] != (i+1))
sequence_correct = false;
}
zassert_true((sequence_correct == true),
"init sequence is not correct");
}
/**
* @brief Test abstraction of device drivers with common functionalities
*
* @details Abstraction of device drivers with common functionalities
* shall be provided as an intermediate interface between applications
* and device drivers, where such interface is implemented by individual
* device drivers. We verify this by following step:
* 1. Define a subsystem api for drivers.
* 2. Define and create two driver instances.
* 3. Two drivers call the same subsystem API, and we verify that each
* driver instance will call their own implementations.
*
* @ingroup kernel_device_tests
*/
void test_abstraction_driver_common(void)
{
const struct device *dev;
int ret;
int foo = 2;
int bar = 1;
unsigned int baz = 0;
/* verify driver A API has called */
dev = device_get_binding(MY_DRIVER_A);
zassert_false((dev == NULL), NULL);
ret = subsystem_do_this(dev, foo, bar);
zassert_true(ret == (foo + bar), "common API do_this fail");
subsystem_do_that(dev, &baz);
zassert_true(baz == 1, "common API do_that fail");
/* verify driver B API has called */
dev = device_get_binding(MY_DRIVER_B);
zassert_false((dev == NULL), NULL);
ret = subsystem_do_this(dev, foo, bar);
zassert_true(ret == (foo - bar), "common API do_this fail");
subsystem_do_that(dev, &baz);
zassert_true(baz == 2, "common API do_that fail");
}
/**
* @}
*/
void test_main(void)
{
ztest_test_suite(device,
ztest_unit_test(test_dummy_device_pm),
ztest_unit_test(test_build_suspend_device_list),
ztest_unit_test(test_dummy_device),
ztest_unit_test(test_enable_and_disable_automatic_idle_pm),
ztest_unit_test(test_pre_kernel_detection),
ztest_user_unit_test(test_bogus_dynamic_name),
ztest_user_unit_test(test_null_dynamic_name),
ztest_user_unit_test(test_dynamic_name),
ztest_unit_test(test_device_init_level),
ztest_unit_test(test_device_init_priority),
ztest_unit_test(test_abstraction_driver_common),
ztest_unit_test(test_mmio_single),
ztest_unit_test(test_mmio_multiple),
ztest_unit_test(test_mmio_toplevel),
ztest_unit_test(test_mmio_device_map));
ztest_run_test_suite(device);
}