blob: b81ffcafe79fa8ffcf80bfbf1f375fe3af4a143d [file] [log] [blame]
/*
* Copyright (c) 2020 Espressif Systems (Shanghai) Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT espressif_esp32_spi
/* Include esp-idf headers first to avoid redefining BIT() macro */
#include <hal/spi_hal.h>
#include <esp_attr.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(esp32_spi, CONFIG_SPI_LOG_LEVEL);
#include <soc.h>
#include <drivers/spi.h>
#include <drivers/gpio/gpio_esp32.h>
#include <drivers/clock_control.h>
#include "spi_context.h"
#include "spi_esp32_spim.h"
/* pins, signals and interrupts shall be placed into dts */
#define MISO_IDX_2 HSPIQ_IN_IDX
#define MISO_IDX_3 VSPIQ_IN_IDX
#define MOSI_IDX_2 HSPID_OUT_IDX
#define MOSI_IDX_3 VSPID_OUT_IDX
#define SCLK_IDX_2 HSPICLK_OUT_IDX
#define SCLK_IDX_3 VSPICLK_OUT_IDX
#define CSEL_IDX_2 HSPICS0_OUT_IDX
#define CSEL_IDX_3 VSPICS0_OUT_IDX
#define INST_2_ESPRESSIF_ESP32_SPI_IRQ_0 13
#define INST_3_ESPRESSIF_ESP32_SPI_IRQ_0 17
static bool spi_esp32_transfer_ongoing(struct spi_esp32_data *data)
{
return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx);
}
static inline void spi_esp32_complete(struct spi_esp32_data *data,
spi_dev_t *spi, int status)
{
#ifdef CONFIG_SPI_ESP32_INTERRUPT
spi_ll_disable_int(spi);
spi_ll_clear_int_stat(spi);
#endif
spi_context_cs_control(&data->ctx, false);
#ifdef CONFIG_SPI_ESP32_INTERRUPT
spi_context_complete(&data->ctx, status);
#endif
}
static int IRAM_ATTR spi_esp32_transfer(const struct device *dev)
{
struct spi_esp32_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
spi_hal_context_t *hal = &data->hal;
size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
/* clean up and prepare SPI hal */
memset((uint32_t *) hal->hw->data_buf, 0, sizeof(hal->hw->data_buf));
hal->send_buffer = (uint8_t *) ctx->tx_buf;
hal->rcv_buffer = ctx->rx_buf;
hal->tx_bitlen = chunk_len << 3;
hal->rx_bitlen = chunk_len << 3;
/* configure SPI */
spi_hal_setup_trans(hal);
spi_hal_prepare_data(hal);
/* send data */
spi_hal_user_start(hal);
spi_context_update_tx(&data->ctx, data->dfs, chunk_len);
while (!spi_hal_usr_is_done(hal)) {
/* nop */
}
/* read data */
spi_hal_fetch_result(hal);
spi_context_update_rx(&data->ctx, data->dfs, chunk_len);
return 0;
}
static int spi_esp32_init(const struct device *dev)
{
const struct spi_esp32_config *cfg = dev->config;
struct spi_esp32_data *data = dev->data;
if (!cfg->clock_dev) {
return -EINVAL;
}
#ifdef CONFIG_SPI_ESP32_INTERRUPT
cfg->irq_config_func(dev);
#endif
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_esp32_configure_pin(gpio_pin_t pin, int pin_sig,
gpio_flags_t pin_mode)
{
const char *device_name = gpio_esp32_get_gpio_for_pin(pin);
const struct device *gpio;
int ret;
if (!device_name) {
LOG_ERR("Could not find GPIO node on devicetree");
return -EINVAL;
}
gpio = device_get_binding(device_name);
if (!gpio) {
LOG_ERR("Could not bind to GPIO device");
return -EIO;
}
ret = gpio_pin_configure(gpio, pin, pin_mode);
if (ret < 0) {
LOG_ERR("SPI pin configuration failed");
return ret;
}
if (pin_mode == GPIO_INPUT) {
esp32_rom_gpio_matrix_in(pin, pin_sig, false);
} else {
esp32_rom_gpio_matrix_out(pin, pin_sig, false, false);
}
return 0;
}
static inline spi_ll_io_mode_t spi_esp32_get_io_mode(uint16_t operation)
{
switch (operation & SPI_LINES_MASK) {
case SPI_LINES_SINGLE:
return SPI_LL_IO_MODE_NORMAL;
case SPI_LINES_DUAL:
return SPI_LL_IO_MODE_DUAL;
case SPI_LINES_OCTAL:
return SPI_LL_IO_MODE_QIO;
case SPI_LINES_QUAD:
return SPI_LL_IO_MODE_QUAD;
default:
return SPI_LL_IO_MODE_NORMAL;
}
}
static int IRAM_ATTR spi_esp32_configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
const struct spi_esp32_config *cfg = dev->config;
struct spi_esp32_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
spi_hal_context_t *hal = &data->hal;
if (spi_context_configured(ctx, spi_cfg)) {
return 0;
}
/* enables SPI peripheral */
if (clock_control_on(cfg->clock_dev, cfg->clock_subsys)) {
LOG_ERR("Could not enable SPI clock");
return -EIO;
}
ctx->config = spi_cfg;
if (spi_cfg->operation & SPI_OP_MODE_SLAVE) {
LOG_ERR("Slave mode not supported");
return -ENOTSUP;
}
if (spi_cfg->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode is not supported");
return -ENOTSUP;
}
spi_esp32_configure_pin(cfg->pins.miso,
cfg->signals.miso_s,
GPIO_INPUT);
spi_esp32_configure_pin(cfg->pins.mosi,
cfg->signals.mosi_s,
GPIO_OUTPUT_LOW);
spi_esp32_configure_pin(cfg->pins.sclk,
cfg->signals.sclk_s,
GPIO_OUTPUT);
if (ctx->config->cs == NULL) {
data->hal.cs_setup = 1;
data->hal.cs_hold = 1;
data->hal.cs_pin_id = 0;
spi_esp32_configure_pin(cfg->pins.csel,
cfg->signals.csel_s,
GPIO_OUTPUT | GPIO_ACTIVE_LOW);
}
spi_context_cs_configure(&data->ctx);
spi_hal_get_clock_conf(hal, spi_cfg->frequency, 128, true, 0, NULL,
&data->timing_conf);
data->hal.timing_conf = &data->timing_conf;
data->hal.dummy_bits = data->hal.timing_conf->timing_dummy;
data->hal.tx_lsbfirst = spi_cfg->operation & SPI_TRANSFER_LSB ? 1 : 0;
data->hal.rx_lsbfirst = spi_cfg->operation & SPI_TRANSFER_LSB ? 1 : 0;
data->hal.io_mode = spi_esp32_get_io_mode(spi_cfg->operation);
/* SPI mode */
data->hal.mode = 0;
if (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL) {
data->hal.mode = BIT(0);
}
if (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA) {
data->hal.mode |= BIT(1);
}
spi_hal_setup_device(hal);
return 0;
}
static inline uint8_t spi_esp32_get_frame_size(const struct spi_config *spi_cfg)
{
uint8_t dfs = SPI_WORD_SIZE_GET(spi_cfg->operation);
dfs /= 8;
if ((dfs == 0) || (dfs > 4)) {
LOG_WRN("Unsupported dfs, 1-byte size will be used");
dfs = 1;
}
return dfs;
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs, bool asynchronous,
struct k_poll_signal *signal)
{
const struct spi_esp32_config *cfg = dev->config;
struct spi_esp32_data *data = dev->data;
int ret;
if (!tx_bufs && !rx_bufs) {
return 0;
}
#ifndef CONFIG_SPI_ESP32_INTERRUPT
if (asynchronous) {
return -ENOTSUP;
}
#endif
spi_context_lock(&data->ctx, asynchronous, signal, spi_cfg);
ret = spi_esp32_configure(dev, spi_cfg);
if (ret) {
goto done;
}
data->dfs = spi_esp32_get_frame_size(spi_cfg);
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, data->dfs);
spi_context_cs_control(&data->ctx, true);
#ifdef CONFIG_SPI_ESP32_INTERRUPT
spi_ll_enable_int(cfg->spi);
spi_ll_set_int_stat(cfg->spi);
#else
do {
spi_esp32_transfer(dev);
} while (spi_esp32_transfer_ongoing(data));
spi_esp32_complete(data, cfg->spi, 0);
#endif /* CONFIG_SPI_ESP32_INTERRUPT */
done:
spi_context_release(&data->ctx, ret);
return ret;
}
#ifdef CONFIG_SPI_ESP32_INTERRUPT
static void IRAM_ATTR spi_esp32_isr(const struct device *dev)
{
const struct spi_esp32_config *cfg = dev->config;
struct spi_esp32_data *data = dev->data;
do {
spi_esp32_transfer(dev);
} while (spi_esp32_transfer_ongoing(data));
spi_esp32_complete(data, cfg->spi, 0);
}
#endif
static int spi_esp32_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_esp32_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
struct k_poll_signal *async)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_esp32_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_esp32_data *data = dev->data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_api = {
.transceive = spi_esp32_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_esp32_transceive_async,
#endif
.release = spi_esp32_release
};
#ifdef CONFIG_SPI_ESP32_INTERRUPT
#define ESP32_SPI_IRQ_HANDLER_DECL(idx) \
static void spi_esp32_irq_config_func_##idx(const struct device *dev)
#define ESP32_SPI_IRQ_HANDLER_FUNC(idx) \
.irq_config_func = spi_esp32_irq_config_func_##idx,
#define ESP32_SPI_IRQ_HANDLER(idx) \
static void spi_esp32_irq_config_func_##idx(const struct device *dev) \
{ \
intr_matrix_set(0, ETS_SPI##idx##_INTR_SOURCE, \
INST_##idx##_ESPRESSIF_ESP32_SPI_IRQ_0); \
IRQ_CONNECT(INST_##idx##_ESPRESSIF_ESP32_SPI_IRQ_0, 1, \
spi_esp32_isr, DEVICE_DT_GET(DT_NODELABEL(spi##idx)), 0); \
irq_enable(INST_##idx##_ESPRESSIF_ESP32_SPI_IRQ_0); \
}
#else
#define ESP32_SPI_IRQ_HANDLER_DECL(idx)
#define ESP32_SPI_IRQ_HANDLER_FUNC(idx)
#define ESP32_SPI_IRQ_HANDLER(idx)
#endif
#define ESP32_SPI_INIT(idx) \
ESP32_SPI_IRQ_HANDLER_DECL(idx); \
\
static struct spi_esp32_data spi_data_##idx = { \
SPI_CONTEXT_INIT_LOCK(spi_data_##idx, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_data_##idx, ctx), \
.hal = { \
.hw = (spi_dev_t *)DT_REG_ADDR(DT_NODELABEL(spi##idx)), \
.half_duplex = DT_PROP(DT_NODELABEL(spi##idx), half_duplex), \
.as_cs = DT_PROP(DT_NODELABEL(spi##idx), clk_as_cs), \
.positive_cs = DT_PROP(DT_NODELABEL(spi##idx), positive_cs), \
.dma_enabled = DT_PROP(DT_NODELABEL(spi##idx), dma), \
.no_compensate = DT_PROP(DT_NODELABEL(spi##idx), dummy_comp), \
.sio = DT_PROP(DT_NODELABEL(spi##idx), sio) \
} \
}; \
\
static const struct spi_esp32_config spi_config_##idx = { \
.spi = (spi_dev_t *)DT_REG_ADDR(DT_NODELABEL(spi##idx)), \
\
.clock_dev = DEVICE_DT_GET(DT_CLOCKS_CTLR(DT_NODELABEL(spi##idx))), \
ESP32_SPI_IRQ_HANDLER_FUNC(idx) \
\
.signals = { \
.miso_s = MISO_IDX_##idx, \
.mosi_s = MOSI_IDX_##idx, \
.sclk_s = SCLK_IDX_##idx, \
.csel_s = CSEL_IDX_##idx \
}, \
\
.pins = { \
.miso = DT_PROP(DT_NODELABEL(spi##idx), miso_pin), \
.mosi = DT_PROP(DT_NODELABEL(spi##idx), mosi_pin), \
.sclk = DT_PROP(DT_NODELABEL(spi##idx), sclk_pin), \
.csel = DT_PROP(DT_NODELABEL(spi##idx), csel_pin) \
}, \
\
.clock_subsys = \
(clock_control_subsys_t)DT_CLOCKS_CELL( \
DT_NODELABEL(spi##idx), offset), \
\
.irq = { \
.source = ETS_SPI##idx##_INTR_SOURCE, \
.line = INST_##idx##_ESPRESSIF_ESP32_SPI_IRQ_0 \
}, \
}; \
\
DEVICE_DT_DEFINE(DT_NODELABEL(spi##idx), &spi_esp32_init, \
device_pm_control_no, &spi_data_##idx, \
&spi_config_##idx, POST_KERNEL, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &spi_api); \
\
ESP32_SPI_IRQ_HANDLER(idx)
#if DT_NODE_HAS_STATUS(DT_NODELABEL(spi2), okay)
ESP32_SPI_INIT(2);
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(spi3), okay)
ESP32_SPI_INIT(3);
#endif