| /* |
| * Copyright (c) 2016 Intel Corporation |
| * Copyright (c) 2011-2014 Wind River Systems, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @file Atomic ops in pure C |
| * |
| * This module provides the atomic operators for processors |
| * which do not support native atomic operations. |
| * |
| * The atomic operations are guaranteed to be atomic with respect |
| * to interrupt service routines, and to operations performed by peer |
| * processors. |
| * |
| * (originally from x86's atomic.c) |
| */ |
| |
| #include <zephyr/toolchain.h> |
| #include <zephyr/arch/cpu.h> |
| #include <zephyr/spinlock.h> |
| #include <zephyr/sys/atomic.h> |
| #include <zephyr/kernel_structs.h> |
| |
| /* Single global spinlock for atomic operations. This is fallback |
| * code, not performance sensitive. At least by not using irq_lock() |
| * in SMP contexts we won't content with legitimate users of the |
| * global lock. |
| */ |
| static struct k_spinlock lock; |
| |
| /* For those rare CPUs which support user mode, but not native atomic |
| * operations, the best we can do for them is implement the atomic |
| * functions as system calls, since in user mode locking a spinlock is |
| * forbidden. |
| */ |
| #ifdef CONFIG_USERSPACE |
| #include <zephyr/internal/syscall_handler.h> |
| |
| #define ATOMIC_SYSCALL_HANDLER_TARGET(name) \ |
| static inline atomic_val_t z_vrfy_##name(atomic_t *target) \ |
| { \ |
| K_OOPS(K_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_t))); \ |
| return z_impl_##name((atomic_t *)target); \ |
| } |
| |
| #define ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(name) \ |
| static inline atomic_val_t z_vrfy_##name(atomic_t *target, \ |
| atomic_val_t value) \ |
| { \ |
| K_OOPS(K_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_t))); \ |
| return z_impl_##name((atomic_t *)target, value); \ |
| } |
| #else |
| #define ATOMIC_SYSCALL_HANDLER_TARGET(name) |
| #define ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(name) |
| #endif |
| |
| /** |
| * |
| * @brief Atomic compare-and-set primitive |
| * |
| * This routine provides the compare-and-set operator. If the original value at |
| * <target> equals <oldValue>, then <newValue> is stored at <target> and the |
| * function returns true. |
| * |
| * If the original value at <target> does not equal <oldValue>, then the store |
| * is not done and the function returns false. |
| * |
| * The reading of the original value at <target>, the comparison, |
| * and the write of the new value (if it occurs) all happen atomically with |
| * respect to both interrupts and accesses of other processors to <target>. |
| * |
| * @param target address to be tested |
| * @param old_value value to compare against |
| * @param new_value value to compare against |
| * @return Returns true if <new_value> is written, false otherwise. |
| */ |
| bool z_impl_atomic_cas(atomic_t *target, atomic_val_t old_value, |
| atomic_val_t new_value) |
| { |
| k_spinlock_key_t key; |
| int ret = false; |
| |
| /* |
| * On SMP the k_spin_lock() definition calls atomic_cas(). |
| * Using k_spin_lock() here would create an infinite loop and |
| * massive stack overflow. Consider CONFIG_ATOMIC_OPERATIONS_ARCH |
| * or CONFIG_ATOMIC_OPERATIONS_BUILTIN instead. |
| */ |
| BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP)); |
| |
| key = k_spin_lock(&lock); |
| |
| if (*target == old_value) { |
| *target = new_value; |
| ret = true; |
| } |
| |
| k_spin_unlock(&lock, key); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| bool z_vrfy_atomic_cas(atomic_t *target, atomic_val_t old_value, |
| atomic_val_t new_value) |
| { |
| K_OOPS(K_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_t))); |
| |
| return z_impl_atomic_cas((atomic_t *)target, old_value, new_value); |
| } |
| #include <syscalls/atomic_cas_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| bool z_impl_atomic_ptr_cas(atomic_ptr_t *target, atomic_ptr_val_t old_value, |
| atomic_ptr_val_t new_value) |
| { |
| k_spinlock_key_t key; |
| int ret = false; |
| |
| key = k_spin_lock(&lock); |
| |
| if (*target == old_value) { |
| *target = new_value; |
| ret = true; |
| } |
| |
| k_spin_unlock(&lock, key); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline bool z_vrfy_atomic_ptr_cas(atomic_ptr_t *target, |
| atomic_ptr_val_t old_value, |
| atomic_ptr_val_t new_value) |
| { |
| K_OOPS(K_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_ptr_t))); |
| |
| return z_impl_atomic_ptr_cas(target, old_value, new_value); |
| } |
| #include <syscalls/atomic_ptr_cas_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| /** |
| * |
| * @brief Atomic addition primitive |
| * |
| * This routine provides the atomic addition operator. The <value> is |
| * atomically added to the value at <target>, placing the result at <target>, |
| * and the old value from <target> is returned. |
| * |
| * @param target memory location to add to |
| * @param value the value to add |
| * |
| * @return The previous value from <target> |
| */ |
| atomic_val_t z_impl_atomic_add(atomic_t *target, atomic_val_t value) |
| { |
| k_spinlock_key_t key; |
| atomic_val_t ret; |
| |
| key = k_spin_lock(&lock); |
| |
| ret = *target; |
| *target += value; |
| |
| k_spin_unlock(&lock, key); |
| |
| return ret; |
| } |
| |
| ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_add); |
| |
| /** |
| * |
| * @brief Atomic subtraction primitive |
| * |
| * This routine provides the atomic subtraction operator. The <value> is |
| * atomically subtracted from the value at <target>, placing the result at |
| * <target>, and the old value from <target> is returned. |
| * |
| * @param target the memory location to subtract from |
| * @param value the value to subtract |
| * |
| * @return The previous value from <target> |
| */ |
| atomic_val_t z_impl_atomic_sub(atomic_t *target, atomic_val_t value) |
| { |
| k_spinlock_key_t key; |
| atomic_val_t ret; |
| |
| key = k_spin_lock(&lock); |
| |
| ret = *target; |
| *target -= value; |
| |
| k_spin_unlock(&lock, key); |
| |
| return ret; |
| } |
| |
| ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_sub); |
| |
| /** |
| * |
| * @brief Atomic get primitive |
| * |
| * @param target memory location to read from |
| * |
| * This routine provides the atomic get primitive to atomically read |
| * a value from <target>. It simply does an ordinary load. Note that <target> |
| * is expected to be aligned to a 4-byte boundary. |
| * |
| * @return The value read from <target> |
| */ |
| atomic_val_t atomic_get(const atomic_t *target) |
| { |
| return *target; |
| } |
| |
| atomic_ptr_val_t atomic_ptr_get(const atomic_ptr_t *target) |
| { |
| return *target; |
| } |
| |
| /** |
| * |
| * @brief Atomic get-and-set primitive |
| * |
| * This routine provides the atomic set operator. The <value> is atomically |
| * written at <target> and the previous value at <target> is returned. |
| * |
| * @param target the memory location to write to |
| * @param value the value to write |
| * |
| * @return The previous value from <target> |
| */ |
| atomic_val_t z_impl_atomic_set(atomic_t *target, atomic_val_t value) |
| { |
| k_spinlock_key_t key; |
| atomic_val_t ret; |
| |
| key = k_spin_lock(&lock); |
| |
| ret = *target; |
| *target = value; |
| |
| k_spin_unlock(&lock, key); |
| |
| return ret; |
| } |
| |
| ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_set); |
| |
| atomic_ptr_val_t z_impl_atomic_ptr_set(atomic_ptr_t *target, |
| atomic_ptr_val_t value) |
| { |
| k_spinlock_key_t key; |
| atomic_ptr_val_t ret; |
| |
| key = k_spin_lock(&lock); |
| |
| ret = *target; |
| *target = value; |
| |
| k_spin_unlock(&lock, key); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline atomic_ptr_val_t z_vrfy_atomic_ptr_set(atomic_ptr_t *target, |
| atomic_ptr_val_t value) |
| { |
| K_OOPS(K_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_ptr_t))); |
| |
| return z_impl_atomic_ptr_set(target, value); |
| } |
| #include <syscalls/atomic_ptr_set_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| /** |
| * |
| * @brief Atomic bitwise inclusive OR primitive |
| * |
| * This routine provides the atomic bitwise inclusive OR operator. The <value> |
| * is atomically bitwise OR'ed with the value at <target>, placing the result |
| * at <target>, and the previous value at <target> is returned. |
| * |
| * @param target the memory location to be modified |
| * @param value the value to OR |
| * |
| * @return The previous value from <target> |
| */ |
| atomic_val_t z_impl_atomic_or(atomic_t *target, atomic_val_t value) |
| { |
| k_spinlock_key_t key; |
| atomic_val_t ret; |
| |
| key = k_spin_lock(&lock); |
| |
| ret = *target; |
| *target |= value; |
| |
| k_spin_unlock(&lock, key); |
| |
| return ret; |
| } |
| |
| ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_or); |
| |
| /** |
| * |
| * @brief Atomic bitwise exclusive OR (XOR) primitive |
| * |
| * This routine provides the atomic bitwise exclusive OR operator. The <value> |
| * is atomically bitwise XOR'ed with the value at <target>, placing the result |
| * at <target>, and the previous value at <target> is returned. |
| * |
| * @param target the memory location to be modified |
| * @param value the value to XOR |
| * |
| * @return The previous value from <target> |
| */ |
| atomic_val_t z_impl_atomic_xor(atomic_t *target, atomic_val_t value) |
| { |
| k_spinlock_key_t key; |
| atomic_val_t ret; |
| |
| key = k_spin_lock(&lock); |
| |
| ret = *target; |
| *target ^= value; |
| |
| k_spin_unlock(&lock, key); |
| |
| return ret; |
| } |
| |
| ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_xor); |
| |
| /** |
| * |
| * @brief Atomic bitwise AND primitive |
| * |
| * This routine provides the atomic bitwise AND operator. The <value> is |
| * atomically bitwise AND'ed with the value at <target>, placing the result |
| * at <target>, and the previous value at <target> is returned. |
| * |
| * @param target the memory location to be modified |
| * @param value the value to AND |
| * |
| * @return The previous value from <target> |
| */ |
| atomic_val_t z_impl_atomic_and(atomic_t *target, atomic_val_t value) |
| { |
| k_spinlock_key_t key; |
| atomic_val_t ret; |
| |
| key = k_spin_lock(&lock); |
| |
| ret = *target; |
| *target &= value; |
| |
| k_spin_unlock(&lock, key); |
| |
| return ret; |
| } |
| |
| ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_and); |
| |
| /** |
| * |
| * @brief Atomic bitwise NAND primitive |
| * |
| * This routine provides the atomic bitwise NAND operator. The <value> is |
| * atomically bitwise NAND'ed with the value at <target>, placing the result |
| * at <target>, and the previous value at <target> is returned. |
| * |
| * @param target the memory location to be modified |
| * @param value the value to NAND |
| * |
| * @return The previous value from <target> |
| */ |
| atomic_val_t z_impl_atomic_nand(atomic_t *target, atomic_val_t value) |
| { |
| k_spinlock_key_t key; |
| atomic_val_t ret; |
| |
| key = k_spin_lock(&lock); |
| |
| ret = *target; |
| *target = ~(*target & value); |
| |
| k_spin_unlock(&lock, key); |
| |
| return ret; |
| } |
| |
| ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_nand); |
| |
| #ifdef CONFIG_USERSPACE |
| #include <syscalls/atomic_add_mrsh.c> |
| #include <syscalls/atomic_sub_mrsh.c> |
| #include <syscalls/atomic_set_mrsh.c> |
| #include <syscalls/atomic_or_mrsh.c> |
| #include <syscalls/atomic_xor_mrsh.c> |
| #include <syscalls/atomic_and_mrsh.c> |
| #include <syscalls/atomic_nand_mrsh.c> |
| #endif |