blob: c4985289f349086724cb75e60112b70b8aaaf689 [file] [log] [blame]
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <ztest.h>
#include <kernel.h>
#include <pthread.h>
#include <semaphore.h>
#define N_THR 3
#define BOUNCES 64
#define STACKSZ 1024
K_THREAD_STACK_ARRAY_DEFINE(stacks, N_THR, STACKSZ);
void *thread_top(void *p1);
PTHREAD_MUTEX_DEFINE(lock);
PTHREAD_COND_DEFINE(cvar0);
PTHREAD_COND_DEFINE(cvar1);
PTHREAD_BARRIER_DEFINE(barrier, N_THR);
sem_t main_sem;
static int bounce_failed;
static int bounce_done[N_THR];
static int curr_bounce_thread;
static int barrier_failed;
static int barrier_done[N_THR];
/* First phase bounces execution between two threads using a condition
* variable, continuously testing that no other thread is mucking with
* the protected state. This ends with all threads going back to
* sleep on the condition variable and being woken by main() for the
* second phase.
*
* Second phase simply lines up all the threads on a barrier, verifies
* that none run until the last one enters, and that all run after the
* exit.
*
* Test success is signaled to main() using a traditional semaphore.
*/
void *thread_top(void *p1)
{
int i, j, id = (int) p1;
int policy;
struct sched_param schedparam;
pthread_getschedparam(pthread_self(), &policy, &schedparam);
printk("Thread %d starting with scheduling policy %d & priority %d\n",
id, policy, schedparam.priority);
/* Try a double-lock here to exercise the failing case of
* trylock. We don't support RECURSIVE locks, so this is
* guaranteed to fail.
*/
pthread_mutex_lock(&lock);
if (!pthread_mutex_trylock(&lock)) {
printk("pthread_mutex_trylock inexplicably succeeded\n");
bounce_failed = 1;
}
pthread_mutex_unlock(&lock);
for (i = 0; i < BOUNCES; i++) {
pthread_mutex_lock(&lock);
/* Wait for the current owner to signal us, unless we
* are the very first thread, in which case we need to
* wait a bit to be sure the other threads get
* scheduled and wait on cvar0.
*/
if (!(id == 0 && i == 0)) {
pthread_cond_wait(&cvar0, &lock);
} else {
pthread_mutex_unlock(&lock);
usleep(500 * USEC_PER_MSEC);
pthread_mutex_lock(&lock);
}
/* Claim ownership, then try really hard to give someone
* else a shot at hitting this if they are racing.
*/
curr_bounce_thread = id;
for (j = 0; j < 1000; j++) {
if (curr_bounce_thread != id) {
printk("Racing bounce threads\n");
bounce_failed = 1;
sem_post(&main_sem);
pthread_mutex_unlock(&lock);
return NULL;
}
sched_yield();
}
/* Next one's turn, go back to the top and wait. */
pthread_cond_signal(&cvar0);
pthread_mutex_unlock(&lock);
}
/* Signal we are complete to main(), then let it wake us up. Note
* that we are using the same mutex with both cvar0 and cvar1,
* which is non-standard but kosher per POSIX (and it works fine
* in our implementation
*/
pthread_mutex_lock(&lock);
bounce_done[id] = 1;
sem_post(&main_sem);
pthread_cond_wait(&cvar1, &lock);
pthread_mutex_unlock(&lock);
/* Now just wait on the barrier. Make sure no one else finished
* before we wait on it, then signal that we're done
*/
for (i = 0; i < N_THR; i++) {
if (barrier_done[i]) {
printk("Barrier exited early\n");
barrier_failed = 1;
sem_post(&main_sem);
}
}
pthread_barrier_wait(&barrier);
barrier_done[id] = 1;
sem_post(&main_sem);
pthread_exit(p1);
return NULL;
}
int bounce_test_done(void)
{
int i;
if (bounce_failed) {
return 1;
}
for (i = 0; i < N_THR; i++) {
if (!bounce_done[i]) {
return 0;
}
}
return 1;
}
int barrier_test_done(void)
{
int i;
if (barrier_failed) {
return 1;
}
for (i = 0; i < N_THR; i++) {
if (!barrier_done[i]) {
return 0;
}
}
return 1;
}
void test_pthread(void)
{
int i, ret, min_prio, max_prio;
pthread_attr_t attr[N_THR];
struct sched_param schedparam;
pthread_t newthread[N_THR];
int schedpolicy = SCHED_FIFO;
void *retval;
sem_init(&main_sem, 0, 1);
printk("POSIX thread IPC APIs\n");
schedparam.priority = CONFIG_NUM_COOP_PRIORITIES - 1;
min_prio = sched_get_priority_min(schedpolicy);
max_prio = sched_get_priority_max(schedpolicy);
ret = (min_prio < 0 || max_prio < 0 ||
schedparam.priority < min_prio ||
schedparam.priority > max_prio);
/*TESTPOINT: Check if scheduling priority is valid*/
zassert_false(ret,
"Scheduling priority outside valid priority range");
for (i = 0; i < N_THR; i++) {
ret = pthread_attr_init(&attr[i]);
if (ret != 0) {
zassert_false(pthread_attr_destroy(&attr[i]),
"Unable to destroy pthread object attrib");
zassert_false(pthread_attr_init(&attr[i]),
"Unable to create pthread object attrib");
}
pthread_attr_setstack(&attr[i], &stacks[i][0], STACKSZ);
pthread_attr_setschedpolicy(&attr[i], schedpolicy);
pthread_attr_setschedparam(&attr[i], &schedparam);
ret = pthread_create(&newthread[i], &attr[i], thread_top,
(void *)i);
/*TESTPOINT: Check if thread is created successfully*/
zassert_false(ret, "Number of threads exceed max limit");
}
while (!bounce_test_done()) {
sem_wait(&main_sem);
}
/*TESTPOINT: Check if bounce test passes*/
zassert_false(bounce_failed, "Bounce test failed");
printk("Bounce test OK\n");
/* Wake up the worker threads */
pthread_mutex_lock(&lock);
pthread_cond_broadcast(&cvar1);
pthread_mutex_unlock(&lock);
while (!barrier_test_done()) {
sem_wait(&main_sem);
}
/*TESTPOINT: Check if barrier test passes*/
zassert_false(barrier_failed, "Barrier test failed");
for (i = 0; i < N_THR; i++) {
pthread_join(newthread[i], &retval);
}
printk("Barrier test OK\n");
}
void test_main(void)
{
ztest_test_suite(test_pthreads,
ztest_unit_test(test_pthread));
ztest_run_test_suite(test_pthreads);
}