blob: d991740b6b6e4e6a2c671bc74b855ebad0f8e4c8 [file] [log] [blame]
/*
* Copyright (c) 2019 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "test_uart.h"
K_SEM_DEFINE(tx_done, 0, 1);
K_SEM_DEFINE(tx_aborted, 0, 1);
K_SEM_DEFINE(rx_rdy, 0, 1);
K_SEM_DEFINE(rx_buf_released, 0, 1);
K_SEM_DEFINE(rx_disabled, 0, 1);
void test_single_read_callback(struct uart_event *evt, void *user_data)
{
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_TX_ABORTED:
(*(u32_t *)user_data)++;
break;
case UART_RX_RDY:
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_RELEASED:
k_sem_give(&rx_buf_released);
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_single_read(void)
{
struct device *uart_dev = device_get_binding(UART_DEVICE_NAME);
volatile u32_t tx_aborted_count = 0;
u8_t rx_buf[10] = {0};
u8_t tx_buf[5] = "test";
zassert_not_equal(memcmp(tx_buf, rx_buf, 5), 0,
"Initial buffer check failed");
uart_callback_set(uart_dev,
test_single_read_callback,
(void *) &tx_aborted_count);
uart_rx_enable(uart_dev, rx_buf, 10, 50);
uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100);
zassert_equal(k_sem_take(&tx_done, 100), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, 100), 0, "RX_RDY timeout");
zassert_equal(memcmp(tx_buf, rx_buf, 5), 0, "Buffers not equal");
zassert_not_equal(memcmp(tx_buf, rx_buf+5, 5), 0, "Buffers not equal");
uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100);
zassert_equal(k_sem_take(&tx_done, 100), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, 100), 0, "RX_RDY timeout");
zassert_equal(k_sem_take(&rx_buf_released, 100),
0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, 1000), 0, "RX_DISABLED timeout");
zassert_equal(memcmp(tx_buf, rx_buf+5, 5), 0, "Buffers not equal");
zassert_equal(tx_aborted_count, 0, "TX aborted triggered");
}
u8_t chained_read_buf0[10];
u8_t chained_read_buf1[20];
u8_t chained_read_buf2[30];
u8_t buf_num = 1U;
u8_t *read_ptr;
void test_chained_read_callback(struct uart_event *evt, void *user_data)
{
struct device *uart_dev = (struct device *) user_data;
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_RX_RDY:
read_ptr = evt->data.rx.buf + evt->data.rx.offset;
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_REQUEST:
if (buf_num == 1U) {
uart_rx_buf_rsp(uart_dev,
chained_read_buf1,
sizeof(chained_read_buf1));
buf_num = 2U;
} else if (buf_num == 2U) {
uart_rx_buf_rsp(uart_dev,
chained_read_buf2,
sizeof(chained_read_buf2));
buf_num = 0U;
}
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_chained_read(void)
{
struct device *uart_dev = device_get_binding(UART_DEVICE_NAME);
u8_t tx_buf[10];
uart_callback_set(uart_dev, test_chained_read_callback, uart_dev);
uart_rx_enable(uart_dev, chained_read_buf0, 10, 50);
for (int i = 0; i < 6; i++) {
zassert_not_equal(k_sem_take(&rx_disabled, 10),
0,
"RX_DISABLED occurred");
snprintf(tx_buf, sizeof(tx_buf), "Message %d", i);
uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100);
zassert_equal(k_sem_take(&tx_done, 100), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, 1000), 0, "RX_RDY timeout");
zassert_equal(memcmp(tx_buf, read_ptr, sizeof(tx_buf)),
0,
"Buffers not equal");
}
zassert_equal(k_sem_take(&rx_disabled, 100), 0, "RX_DISABLED timeout");
}
u8_t double_buffer[2][12];
u8_t *next_buf = double_buffer[1];
void test_double_buffer_callback(struct uart_event *evt, void *user_data)
{
struct device *uart_dev = (struct device *) user_data;
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_RX_RDY:
read_ptr = evt->data.rx.buf + evt->data.rx.offset;
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_REQUEST:
uart_rx_buf_rsp(uart_dev, next_buf, sizeof(double_buffer[0]));
break;
case UART_RX_BUF_RELEASED:
next_buf = evt->data.rx_buf.buf;
k_sem_give(&rx_buf_released);
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_double_buffer(void)
{
struct device *uart_dev = device_get_binding(UART_DEVICE_NAME);
u8_t tx_buf[4];
uart_callback_set(uart_dev, test_double_buffer_callback, uart_dev);
zassert_equal(uart_rx_enable(uart_dev,
double_buffer[0],
sizeof(double_buffer[0]),
50),
0,
"Failed to enable receiving");
for (int i = 0; i < 100; i++) {
snprintf(tx_buf, sizeof(tx_buf), "%03d", i);
uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100);
zassert_equal(k_sem_take(&tx_done, 100), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, 100), 0, "RX_RDY timeout");
zassert_equal(memcmp(tx_buf, read_ptr, sizeof(tx_buf)),
0,
"Buffers not equal");
}
uart_rx_disable(uart_dev);
zassert_equal(k_sem_take(&rx_disabled, 100), 0, "RX_DISABLED timeout");
}
void test_read_abort_callback(struct uart_event *evt, void *user_data)
{
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_RX_RDY:
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_RELEASED:
k_sem_give(&rx_buf_released);
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_read_abort(void)
{
struct device *uart_dev = device_get_binding(UART_DEVICE_NAME);
u8_t rx_buf[100];
u8_t tx_buf[100];
memset(rx_buf, 0, sizeof(rx_buf));
memset(tx_buf, 1, sizeof(tx_buf));
uart_callback_set(uart_dev, test_read_abort_callback, NULL);
uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), 50);
uart_tx(uart_dev, tx_buf, 5, 100);
zassert_equal(k_sem_take(&tx_done, 100), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, 100), 0, "RX_RDY timeout");
zassert_equal(memcmp(tx_buf, rx_buf, 5), 0, "Buffers not equal");
uart_tx(uart_dev, tx_buf, 95, 100);
uart_rx_disable(uart_dev);
zassert_equal(k_sem_take(&tx_done, 100), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_buf_released, 100),
0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, 100), 0, "RX_DISABLED timeout");
zassert_not_equal(k_sem_take(&rx_rdy, 100), 0, "RX_RDY occurred");
zassert_not_equal(memcmp(tx_buf, rx_buf, 100), 0, "Buffers equal");
}
volatile size_t sent;
volatile size_t received;
void test_write_abort_callback(struct uart_event *evt, void *user_data)
{
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_TX_ABORTED:
sent = evt->data.tx.len;
k_sem_give(&tx_aborted);
break;
case UART_RX_RDY:
received = evt->data.rx.len;
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_RELEASED:
k_sem_give(&rx_buf_released);
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_write_abort(void)
{
struct device *uart_dev = device_get_binding(UART_DEVICE_NAME);
u8_t rx_buf[100];
u8_t tx_buf[100];
memset(rx_buf, 0, sizeof(rx_buf));
memset(tx_buf, 1, sizeof(tx_buf));
uart_callback_set(uart_dev, test_write_abort_callback, NULL);
uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), 50);
uart_tx(uart_dev, tx_buf, 5, 100);
zassert_equal(k_sem_take(&tx_done, 100), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, 100), 0, "RX_RDY timeout");
zassert_equal(memcmp(tx_buf, rx_buf, 5), 0, "Buffers not equal");
uart_tx(uart_dev, tx_buf, 95, 100);
uart_tx_abort(uart_dev);
zassert_equal(k_sem_take(&tx_aborted, 100), 0, "TX_ABORTED timeout");
if (sent != 0) {
zassert_equal(k_sem_take(&rx_rdy, 100), 0, "RX_RDY timeout");
zassert_equal(sent, received, "Sent is not equal to received.");
}
uart_rx_disable(uart_dev);
zassert_equal(k_sem_take(&rx_buf_released, 100),
0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, 100), 0, "RX_DISABLED timeout");
}
u8_t chained_write_tx_bufs[2][10] = {"Message 1", "Message 2"};
bool chained_write_next_buf = true;
volatile u8_t tx_sent;
void test_chained_write_callback(struct uart_event *evt, void *user_data)
{
struct device *uart_dev = (struct device *) user_data;
switch (evt->type) {
case UART_TX_DONE:
if (chained_write_next_buf) {
uart_tx(uart_dev, chained_write_tx_bufs[1], 10, 100);
chained_write_next_buf = false;
}
tx_sent = 1;
k_sem_give(&tx_done);
break;
case UART_TX_ABORTED:
sent = evt->data.tx.len;
k_sem_give(&tx_aborted);
break;
case UART_RX_RDY:
received = evt->data.rx.len;
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_RELEASED:
k_sem_give(&rx_buf_released);
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_chained_write(void)
{
struct device *uart_dev = device_get_binding(UART_DEVICE_NAME);
u8_t rx_buf[20];
memset(rx_buf, 0, sizeof(rx_buf));
uart_callback_set(uart_dev, test_chained_write_callback, uart_dev);
uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), 50);
uart_tx(uart_dev, chained_write_tx_bufs[0], 10, 100);
zassert_equal(k_sem_take(&tx_done, 100), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&tx_done, 100), 0, "TX_DONE timeout");
zassert_equal(chained_write_next_buf, false, "Sent no message");
zassert_equal(k_sem_take(&rx_rdy, 100), 0, "RX_RDY timeout");
zassert_equal(memcmp(chained_write_tx_bufs[0], rx_buf, 10),
0,
"Buffers not equal");
zassert_equal(memcmp(chained_write_tx_bufs[1], rx_buf + 10, 10),
0,
"Buffers not equal");
uart_rx_disable(uart_dev);
zassert_equal(k_sem_take(&rx_buf_released, 100),
0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, 100), 0, "RX_DISABLED timeout");
}