blob: 242b3730f6cde159c7980d3372d83d6bba59d50c [file] [log] [blame]
/*
* Copyright (c) 2019 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/sensor.h>
#include <drivers/clock_control.h>
#include "nrf_clock_calibration.h"
#include <drivers/clock_control/nrf_clock_control.h>
#include <hal/nrf_clock.h>
#include <logging/log.h>
#include <stdlib.h>
LOG_MODULE_DECLARE(clock_control, CONFIG_CLOCK_CONTROL_LOG_LEVEL);
/**
* Terms:
* - calibration - overall process of LFRC clock calibration which is performed
* periodically, calibration may include temperature monitoring, hf XTAL
* starting and stopping.
* - cycle - all calibration phases (waiting, temperature monitoring,
* calibration).
* - process - calibration process which may consists of hf XTAL clock
* requesting, performing hw calibration and releasing hf clock.
* - hw_cal - calibration action performed by the hardware.
*
* Those terms are later on used in function names.
*
* In order to ensure that low frequency clock is not released when calibration
* is ongoing, it is requested by the calibration process and released when
* calibration is done.
*/
static atomic_t cal_process_in_progress;
static s16_t prev_temperature; /* Previous temperature measurement. */
static u8_t calib_skip_cnt; /* Counting down skipped calibrations. */
static volatile int total_cnt; /* Total number of calibrations. */
static volatile int total_skips_cnt; /* Total number of skipped calibrations. */
/* Callback called on hfclk started. */
static void cal_hf_on_callback(struct device *dev,
clock_control_subsys_t subsys,
void *user_data);
static struct clock_control_async_data cal_hf_on_data = {
.cb = cal_hf_on_callback
};
static void cal_lf_on_callback(struct device *dev,
clock_control_subsys_t subsys, void *user_data);
static struct clock_control_async_data cal_lf_on_data = {
.cb = cal_lf_on_callback
};
static struct device *clk_dev;
static struct device *temp_sensor;
static void measure_temperature(struct k_work *work);
static K_WORK_DEFINE(temp_measure_work, measure_temperature);
static void timeout_handler(struct k_timer *timer);
static K_TIMER_DEFINE(backoff_timer, timeout_handler, NULL);
static void hf_request(void)
{
clock_control_async_on(clk_dev, CLOCK_CONTROL_NRF_SUBSYS_HF,
&cal_hf_on_data);
}
static void hf_release(void)
{
clock_control_off(clk_dev, CLOCK_CONTROL_NRF_SUBSYS_HF);
}
static void lf_request(void)
{
clock_control_async_on(clk_dev, CLOCK_CONTROL_NRF_SUBSYS_LF,
&cal_lf_on_data);
}
static void lf_release(void)
{
clock_control_off(clk_dev, CLOCK_CONTROL_NRF_SUBSYS_LF);
}
static void cal_lf_on_callback(struct device *dev,
clock_control_subsys_t subsys, void *user_data)
{
hf_request();
}
/* Start actual HW calibration assuming that HFCLK XTAL is on. */
static void start_hw_cal(void)
{
/* Workaround for Errata 192 */
if (IS_ENABLED(CONFIG_SOC_SERIES_NRF52X)) {
*(volatile uint32_t *)0x40000C34 = 0x00000002;
}
nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_CAL);
calib_skip_cnt = CONFIG_CLOCK_CONTROL_NRF_CALIBRATION_MAX_SKIP;
}
/* Start cycle by starting backoff timer and releasing HFCLK XTAL. */
static void start_cycle(void)
{
k_timer_start(&backoff_timer,
K_MSEC(CONFIG_CLOCK_CONTROL_NRF_CALIBRATION_PERIOD),
K_NO_WAIT);
hf_release();
lf_release();
cal_process_in_progress = 0;
}
static void start_cal_process(void)
{
if (atomic_cas(&cal_process_in_progress, 0, 1) == false) {
return;
}
/* LF clock is probably running but it is requested to ensure that
* it is not released while calibration process in ongoing. If system
* releases the clock during calibration process it will be released
* at the end of calibration process and stopped in consequence.
*/
lf_request();
}
static void timeout_handler(struct k_timer *timer)
{
start_cal_process();
}
/* Called when HFCLK XTAL is on. Schedules temperature measurement or triggers
* calibration.
*/
static void cal_hf_on_callback(struct device *dev,
clock_control_subsys_t subsys, void *user_data)
{
if ((temp_sensor == NULL) || !IS_ENABLED(CONFIG_MULTITHREADING)) {
start_hw_cal();
} else {
k_work_submit(&temp_measure_work);
}
}
static void on_hw_cal_done(void)
{
/* Workaround for Errata 192 */
if (IS_ENABLED(CONFIG_SOC_SERIES_NRF52X)) {
*(volatile uint32_t *)0x40000C34 = 0x00000000;
}
total_cnt++;
LOG_DBG("Calibration done.");
start_cycle();
}
/* Convert sensor value to 0.25'C units. */
static inline s16_t sensor_value_to_temp_unit(struct sensor_value *val)
{
return (s16_t)(4 * val->val1 + val->val2 / 250000);
}
/* Function reads from temperature sensor and converts to 0.25'C units. */
static int get_temperature(s16_t *tvp)
{
struct sensor_value sensor_val;
int rc = sensor_sample_fetch(temp_sensor);
if (rc == 0) {
rc = sensor_channel_get(temp_sensor, SENSOR_CHAN_DIE_TEMP,
&sensor_val);
}
if (rc == 0) {
*tvp = sensor_value_to_temp_unit(&sensor_val);
}
return rc;
}
/* Function determines if calibration should be performed based on temperature
* measurement. Function is called from system work queue context. It is
* reading temperature from TEMP sensor and compares with last measurement.
*/
static void measure_temperature(struct k_work *work)
{
s16_t temperature = 0;
s16_t diff = 0;
bool started = false;
int rc;
rc = get_temperature(&temperature);
if (rc != 0) {
/* Temperature read failed, force calibration. */
calib_skip_cnt = 0;
} else {
diff = abs(temperature - prev_temperature);
}
if ((calib_skip_cnt == 0) ||
(diff >= CONFIG_CLOCK_CONTROL_NRF_CALIBRATION_TEMP_DIFF)) {
prev_temperature = temperature;
started = true;
start_hw_cal();
} else {
calib_skip_cnt--;
total_skips_cnt++;
start_cycle();
}
LOG_DBG("Calibration %s. Temperature diff: %d (in 0.25'C units).",
started ? "started" : "skipped", diff);
}
#define TEMP_NODE DT_INST(0, nordic_nrf_temp)
#if DT_NODE_HAS_STATUS(TEMP_NODE, okay)
static inline struct device *temp_device(void)
{
return device_get_binding(DT_LABEL(TEMP_NODE));
}
#else
#define temp_device() NULL
#endif
void z_nrf_clock_calibration_init(struct device *dev)
{
/* Anomaly 36: After watchdog timeout reset, CPU lockup reset, soft
* reset, or pin reset EVENTS_DONE and EVENTS_CTTO are not reset.
*/
nrf_clock_event_clear(NRF_CLOCK, NRF_CLOCK_EVENT_DONE);
nrf_clock_int_enable(NRF_CLOCK, NRF_CLOCK_INT_DONE_MASK);
clk_dev = dev;
total_cnt = 0;
total_skips_cnt = 0;
}
#if CONFIG_CLOCK_CONTROL_NRF_CALIBRATION_MAX_SKIP
static int temp_sensor_init(struct device *arg)
{
temp_sensor = temp_device();
return 0;
}
SYS_INIT(temp_sensor_init, APPLICATION, 0);
#endif /* CONFIG_CLOCK_CONTROL_NRF_CALIBRATION_MAX_SKIP */
static void start_unconditional_cal_process(void)
{
calib_skip_cnt = 0;
start_cal_process();
}
void z_nrf_clock_calibration_force_start(void)
{
/* if it's already in progress that is good enough. */
if (cal_process_in_progress) {
return;
}
start_unconditional_cal_process();
}
void z_nrf_clock_calibration_lfclk_started(void)
{
start_unconditional_cal_process();
}
void z_nrf_clock_calibration_lfclk_stopped(void)
{
k_timer_stop(&backoff_timer);
LOG_DBG("Calibration stopped");
}
void z_nrf_clock_calibration_isr(void)
{
if (nrf_clock_event_check(NRF_CLOCK, NRF_CLOCK_EVENT_DONE)) {
nrf_clock_event_clear(NRF_CLOCK, NRF_CLOCK_EVENT_DONE);
on_hw_cal_done();
}
}
int z_nrf_clock_calibration_count(void)
{
if (!IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_CALIBRATION_DEBUG)) {
return -1;
}
return total_cnt;
}
int z_nrf_clock_calibration_skips_count(void)
{
if (!IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_CALIBRATION_DEBUG)) {
return -1;
}
return total_skips_cnt;
}