blob: 905a9108b6e3dc35966fe3792feb62bc33b72b7a [file] [log] [blame]
/*
* Copyright (c) 2020 Intel Corporation
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <arch/x86/acpi.h>
struct acpi_rsdp {
char sig[8];
uint8_t csum;
char oemid[6];
uint8_t rev;
uint32_t rsdt_ptr;
uint32_t len;
uint64_t xsdt_ptr;
uint8_t ext_csum;
uint8_t _rsvd[3];
} __packed;
struct acpi_rsdt {
struct acpi_sdt sdt;
uint32_t table_ptrs[];
} __packed;
struct acpi_xsdt {
struct acpi_sdt sdt;
uint64_t table_ptrs[];
} __packed;
static bool check_sum(struct acpi_sdt *t)
{
uint8_t sum = 0, *p = (uint8_t *)t;
for (int i = 0; i < t->len; i++) {
sum += p[i];
}
return sum == 0;
}
/* We never identity map the NULL page, but may need to read some BIOS data */
static uint8_t *zero_page_base;
static struct acpi_rsdp *find_rsdp(void)
{
uint64_t magic = 0x2052545020445352; /* == "RSD PTR " */
uint8_t *bda_seg;
if (zero_page_base == NULL) {
z_mem_map(&zero_page_base, 0, 4096, K_MEM_PERM_RW);
}
/* Physical (real mode!) address 0000:040e stores a (real
* mode!!) segment descriptor pointing to the 1kb Extended
* BIOS Data Area. Look there first.
*
* We had to memory map this segment descriptor since it is in
* the NULL page. The remaining structures (EBDA etc) are identity
* mapped somewhere within the minefield of reserved regions in the
* first megabyte and are directly accessible.
*/
bda_seg = 0x040e + zero_page_base;
uint64_t *search = (void *)(long)(((int)*(uint16_t *)bda_seg) << 4);
/* Might be nothing there, check before we inspect */
if (search != NULL) {
for (int i = 0; i < 1024/8; i++) {
if (search[i] == magic) {
return (void *)&search[i];
}
}
}
/* If it's not there, then look for it in the last 128kb of
* real mode memory.
*/
search = (uint64_t *)0xe0000;
for (int i = 0; i < 128*1024/8; i++) {
if (search[i] == magic) {
return (void *)&search[i];
}
}
/* Now we're supposed to look in the UEFI system table, which
* is passed as a function argument to the bootloader and long
* forgotten by now...
*/
return NULL;
}
void *z_acpi_find_table(uint32_t signature)
{
struct acpi_rsdp *rsdp = find_rsdp();
if (!rsdp) {
return NULL;
}
struct acpi_rsdt *rsdt = (void *)(long)rsdp->rsdt_ptr;
if (rsdt && check_sum(&rsdt->sdt)) {
uint32_t *end = (uint32_t *)((char *)rsdt + rsdt->sdt.len);
for (uint32_t *tp = &rsdt->table_ptrs[0]; tp < end; tp++) {
struct acpi_sdt *t = (void *)(long)*tp;
if (t->sig == signature && check_sum(t)) {
return t;
}
}
}
if (rsdp->rev < 2) {
return NULL;
}
struct acpi_xsdt *xsdt = (void *)(long)rsdp->xsdt_ptr;
if (xsdt && check_sum(&xsdt->sdt)) {
uint64_t *end = (uint64_t *)((char *)xsdt + xsdt->sdt.len);
for (uint64_t *tp = &xsdt->table_ptrs[0]; tp < end; tp++) {
struct acpi_sdt *t = (void *)(long)*tp;
if (t->sig == signature && check_sum(t)) {
return t;
}
}
}
return NULL;
}
/*
* Return the 'n'th CPU entry from the ACPI MADT, or NULL if not available.
*/
struct acpi_cpu *z_acpi_get_cpu(int n)
{
struct acpi_madt *madt = z_acpi_find_table(ACPI_MADT_SIGNATURE);
uintptr_t base = POINTER_TO_UINT(madt);
uintptr_t offset;
if (madt) {
offset = POINTER_TO_UINT(madt->entries) - base;
while (offset < madt->sdt.len) {
struct acpi_madt_entry *entry;
entry = (struct acpi_madt_entry *) (offset + base);
if (entry->type == ACPI_MADT_ENTRY_CPU) {
if (n) {
--n;
} else {
return (struct acpi_cpu *) entry;
}
}
offset += entry->length;
}
}
return NULL;
}