blob: 172e8729976bb397f6369af5d3a6bbfbe424c977 [file] [log] [blame]
/*
* Copyright (c) 2016-2019 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief Driver for Nordic Semiconductor nRF5X UART
*/
#include <drivers/uart.h>
#include <hal/nrf_uart.h>
#include <hal/nrf_gpio.h>
/*
* Extract information from devicetree.
*
* This driver only supports one instance of this IP block, so the
* instance number is always 0.
*/
#define DT_DRV_COMPAT nordic_nrf_uart
#define PROP(prop) DT_INST_PROP(0, prop)
#define HAS_PROP(prop) DT_INST_NODE_HAS_PROP(0, prop)
#define BAUDRATE PROP(current_speed)
#define TX_PIN PROP(tx_pin)
#define RX_PIN_USED HAS_PROP(rx_pin)
#if RX_PIN_USED
#define RX_PIN PROP(rx_pin)
#else
#define RX_PIN NRF_UART_PSEL_DISCONNECTED
#endif
#define HW_FLOW_CONTROL_AVAILABLE (HAS_PROP(rts_pin) || HAS_PROP(cts_pin))
/* Protect against enabling flow control without pins set. */
BUILD_ASSERT((PROP(hw_flow_control) && HW_FLOW_CONTROL_AVAILABLE) ||
!PROP(hw_flow_control));
#define RTS_PIN \
COND_CODE_1(HAS_PROP(rts_pin), \
(PROP(rts_pin)), (NRF_UART_PSEL_DISCONNECTED))
#define CTS_PIN \
COND_CODE_1(HAS_PROP(cts_pin), \
(PROP(cts_pin)), (NRF_UART_PSEL_DISCONNECTED))
#define IRQN DT_INST_IRQN(0)
#define IRQ_PRIO DT_INST_IRQ(0, priority)
static NRF_UART_Type *const uart0_addr = (NRF_UART_Type *)DT_INST_REG_ADDR(0);
/* Device data structure */
struct uart_nrfx_data {
struct uart_config uart_config;
};
static inline struct uart_nrfx_data *get_dev_data(const struct device *dev)
{
return dev->data;
}
#ifdef CONFIG_UART_0_ASYNC
static struct {
uart_callback_t callback;
void *user_data;
uint8_t *rx_buffer;
uint8_t *rx_secondary_buffer;
size_t rx_buffer_length;
size_t rx_secondary_buffer_length;
volatile size_t rx_counter;
volatile size_t rx_offset;
int32_t rx_timeout;
struct k_timer rx_timeout_timer;
bool rx_enabled;
bool tx_abort;
const uint8_t *volatile tx_buffer;
size_t tx_buffer_length;
volatile size_t tx_counter;
#if HW_FLOW_CONTROL_AVAILABLE
int32_t tx_timeout;
struct k_timer tx_timeout_timer;
#endif
} uart0_cb;
#endif /* CONFIG_UART_0_ASYNC */
#ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
static uart_irq_callback_user_data_t irq_callback; /**< Callback function pointer */
static void *irq_cb_data; /**< Callback function arg */
/* Variable used to override the state of the TXDRDY event in the initial state
* of the driver. This event is not set by the hardware until a first byte is
* sent, and we want to use it as an indication if the transmitter is ready
* to accept a new byte.
*/
static volatile uint8_t uart_sw_event_txdrdy;
static volatile bool disable_tx_irq;
#endif /* CONFIG_UART_0_INTERRUPT_DRIVEN */
static bool event_txdrdy_check(void)
{
return (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_TXDRDY)
#ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
|| uart_sw_event_txdrdy
#endif
);
}
static void event_txdrdy_clear(void)
{
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY);
#ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
uart_sw_event_txdrdy = 0U;
#endif
}
/**
* @brief Set the baud rate
*
* This routine set the given baud rate for the UART.
*
* @param dev UART device struct
* @param baudrate Baud rate
*
* @return N/A
*/
static int baudrate_set(const struct device *dev, uint32_t baudrate)
{
nrf_uart_baudrate_t nrf_baudrate; /* calculated baudrate divisor */
switch (baudrate) {
case 300:
/* value not supported by Nordic HAL */
nrf_baudrate = 0x00014000;
break;
case 600:
/* value not supported by Nordic HAL */
nrf_baudrate = 0x00027000;
break;
case 1200:
nrf_baudrate = NRF_UART_BAUDRATE_1200;
break;
case 2400:
nrf_baudrate = NRF_UART_BAUDRATE_2400;
break;
case 4800:
nrf_baudrate = NRF_UART_BAUDRATE_4800;
break;
case 9600:
nrf_baudrate = NRF_UART_BAUDRATE_9600;
break;
case 14400:
nrf_baudrate = NRF_UART_BAUDRATE_14400;
break;
case 19200:
nrf_baudrate = NRF_UART_BAUDRATE_19200;
break;
case 28800:
nrf_baudrate = NRF_UART_BAUDRATE_28800;
break;
case 31250:
nrf_baudrate = NRF_UART_BAUDRATE_31250;
break;
case 38400:
nrf_baudrate = NRF_UART_BAUDRATE_38400;
break;
case 56000:
nrf_baudrate = NRF_UART_BAUDRATE_56000;
break;
case 57600:
nrf_baudrate = NRF_UART_BAUDRATE_57600;
break;
case 76800:
nrf_baudrate = NRF_UART_BAUDRATE_76800;
break;
case 115200:
nrf_baudrate = NRF_UART_BAUDRATE_115200;
break;
case 230400:
nrf_baudrate = NRF_UART_BAUDRATE_230400;
break;
case 250000:
nrf_baudrate = NRF_UART_BAUDRATE_250000;
break;
case 460800:
nrf_baudrate = NRF_UART_BAUDRATE_460800;
break;
case 921600:
nrf_baudrate = NRF_UART_BAUDRATE_921600;
break;
case 1000000:
nrf_baudrate = NRF_UART_BAUDRATE_1000000;
break;
default:
return -EINVAL;
}
nrf_uart_baudrate_set(uart0_addr, nrf_baudrate);
return 0;
}
/**
* @brief Poll the device for input.
*
* @param dev UART device struct
* @param c Pointer to character
*
* @return 0 if a character arrived, -1 if the input buffer if empty.
*/
static int uart_nrfx_poll_in(const struct device *dev, unsigned char *c)
{
if (!nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY)) {
return -1;
}
/* Clear the interrupt */
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY);
/* got a character */
*c = nrf_uart_rxd_get(uart0_addr);
return 0;
}
#ifdef CONFIG_UART_0_ASYNC
static void uart_nrfx_isr(const struct device *dev);
#endif
/**
* @brief Output a character in polled mode.
*
* @param dev UART device struct
* @param c Character to send
*/
static void uart_nrfx_poll_out(const struct device *dev, unsigned char c)
{
atomic_t *lock;
#ifdef CONFIG_UART_0_ASYNC
while (uart0_cb.tx_buffer) {
/* If there is ongoing asynchronous transmission, and we are in
* ISR, then call uart interrupt routine, otherwise
* busy wait until transmission is finished.
*/
if (k_is_in_isr()) {
uart_nrfx_isr(dev);
}
}
/* Use tx_buffer_length as lock, this way uart_nrfx_tx will
* return -EBUSY during poll_out.
*/
lock = &uart0_cb.tx_buffer_length;
#else
static atomic_val_t poll_out_lock;
lock = &poll_out_lock;
#endif
if (!k_is_in_isr()) {
uint8_t safety_cnt = 100;
while (atomic_cas((atomic_t *) lock,
(atomic_val_t) 0,
(atomic_val_t) 1) == false) {
/* k_sleep allows other threads to execute and finish
* their transactions.
*/
k_msleep(1);
if (--safety_cnt == 0) {
break;
}
}
} else {
*lock = 1;
}
/* Reset the transmitter ready state. */
event_txdrdy_clear();
/* Activate the transmitter. */
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTTX);
/* Send the provided character. */
nrf_uart_txd_set(uart0_addr, (uint8_t)c);
/* Wait until the transmitter is ready, i.e. the character is sent. */
int res;
NRFX_WAIT_FOR(event_txdrdy_check(), 1000, 1, res);
/* Deactivate the transmitter so that it does not needlessly
* consume power.
*/
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX);
/* Release the lock. */
*lock = 0;
}
/** Console I/O function */
static int uart_nrfx_err_check(const struct device *dev)
{
/* register bitfields maps to the defines in uart.h */
return nrf_uart_errorsrc_get_and_clear(uart0_addr);
}
static int uart_nrfx_configure(const struct device *dev,
const struct uart_config *cfg)
{
nrf_uart_config_t uart_cfg;
#if defined(UART_CONFIG_STOP_Msk)
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
uart_cfg.stop = NRF_UART_STOP_ONE;
break;
case UART_CFG_STOP_BITS_2:
uart_cfg.stop = NRF_UART_STOP_TWO;
break;
default:
return -ENOTSUP;
}
#else
if (cfg->stop_bits != UART_CFG_STOP_BITS_1) {
return -ENOTSUP;
}
#endif
if (cfg->data_bits != UART_CFG_DATA_BITS_8) {
return -ENOTSUP;
}
switch (cfg->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
uart_cfg.hwfc = NRF_UART_HWFC_DISABLED;
break;
case UART_CFG_FLOW_CTRL_RTS_CTS:
if (HW_FLOW_CONTROL_AVAILABLE) {
uart_cfg.hwfc = NRF_UART_HWFC_ENABLED;
} else {
return -ENOTSUP;
}
break;
default:
return -ENOTSUP;
}
#if defined(UART_CONFIG_PARITYTYPE_Msk)
uart_cfg.paritytype = NRF_UART_PARITYTYPE_EVEN;
#endif
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
uart_cfg.parity = NRF_UART_PARITY_EXCLUDED;
break;
case UART_CFG_PARITY_EVEN:
uart_cfg.parity = NRF_UART_PARITY_INCLUDED;
break;
#if defined(UART_CONFIG_PARITYTYPE_Msk)
case UART_CFG_PARITY_ODD:
uart_cfg.parity = NRF_UART_PARITY_INCLUDED;
uart_cfg.paritytype = NRF_UART_PARITYTYPE_ODD;
break;
#endif
default:
return -ENOTSUP;
}
if (baudrate_set(dev, cfg->baudrate) != 0) {
return -ENOTSUP;
}
nrf_uart_configure(uart0_addr, &uart_cfg);
get_dev_data(dev)->uart_config = *cfg;
return 0;
}
static int uart_nrfx_config_get(const struct device *dev,
struct uart_config *cfg)
{
*cfg = get_dev_data(dev)->uart_config;
return 0;
}
#ifdef CONFIG_UART_0_ASYNC
static void user_callback(const struct device *dev, struct uart_event *event)
{
if (uart0_cb.callback) {
uart0_cb.callback(dev, event, uart0_cb.user_data);
}
}
static int uart_nrfx_callback_set(const struct device *dev,
uart_callback_t callback,
void *user_data)
{
uart0_cb.callback = callback;
uart0_cb.user_data = user_data;
return 0;
}
static int uart_nrfx_tx(const struct device *dev, const uint8_t *buf,
size_t len,
int32_t timeout)
{
if (atomic_cas((atomic_t *) &uart0_cb.tx_buffer_length,
(atomic_val_t) 0,
(atomic_val_t) len) == false) {
return -EBUSY;
}
uart0_cb.tx_buffer = buf;
#if HW_FLOW_CONTROL_AVAILABLE
uart0_cb.tx_timeout = timeout;
#endif
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY);
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTTX);
nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_TXDRDY);
uint8_t txd = uart0_cb.tx_buffer[uart0_cb.tx_counter];
nrf_uart_txd_set(uart0_addr, txd);
return 0;
}
static int uart_nrfx_tx_abort(const struct device *dev)
{
if (uart0_cb.tx_buffer_length == 0) {
return -EINVAL;
}
#if HW_FLOW_CONTROL_AVAILABLE
if (uart0_cb.tx_timeout != SYS_FOREVER_MS) {
k_timer_stop(&uart0_cb.tx_timeout_timer);
}
#endif
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX);
struct uart_event evt = {
.type = UART_TX_ABORTED,
.data.tx.buf = uart0_cb.tx_buffer,
.data.tx.len = uart0_cb.tx_counter
};
uart0_cb.tx_buffer_length = 0;
uart0_cb.tx_counter = 0;
user_callback(dev, &evt);
return 0;
}
static int uart_nrfx_rx_enable(const struct device *dev, uint8_t *buf,
size_t len,
int32_t timeout)
{
if (!RX_PIN_USED) {
__ASSERT(false, "TX only UART instance");
return -ENOTSUP;
}
if (uart0_cb.rx_buffer_length != 0) {
return -EBUSY;
}
uart0_cb.rx_enabled = 1;
uart0_cb.rx_buffer = buf;
uart0_cb.rx_buffer_length = len;
uart0_cb.rx_counter = 0;
uart0_cb.rx_secondary_buffer_length = 0;
uart0_cb.rx_timeout = timeout;
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_ERROR);
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY);
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXTO);
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTRX);
nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_RXDRDY |
NRF_UART_INT_MASK_ERROR |
NRF_UART_INT_MASK_RXTO);
return 0;
}
static int uart_nrfx_rx_buf_rsp(const struct device *dev, uint8_t *buf,
size_t len)
{
int err;
int key = irq_lock();
if (!uart0_cb.rx_enabled) {
err = -EACCES;
} else if (uart0_cb.rx_secondary_buffer_length != 0) {
err = -EBUSY;
} else {
uart0_cb.rx_secondary_buffer = buf;
uart0_cb.rx_secondary_buffer_length = len;
err = 0;
}
irq_unlock(key);
return err;
}
static int uart_nrfx_rx_disable(const struct device *dev)
{
if (uart0_cb.rx_buffer_length == 0) {
return -EFAULT;
}
uart0_cb.rx_enabled = 0;
if (uart0_cb.rx_timeout != SYS_FOREVER_MS) {
k_timer_stop(&uart0_cb.rx_timeout_timer);
}
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPRX);
return 0;
}
static void rx_rdy_evt(const struct device *dev)
{
struct uart_event event;
size_t rx_cnt = uart0_cb.rx_counter;
event.type = UART_RX_RDY;
event.data.rx.buf = uart0_cb.rx_buffer;
event.data.rx.len = rx_cnt - uart0_cb.rx_offset;
event.data.rx.offset = uart0_cb.rx_offset;
uart0_cb.rx_offset = rx_cnt;
user_callback(dev, &event);
}
static void buf_released_evt(const struct device *dev)
{
struct uart_event event = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = uart0_cb.rx_buffer
};
user_callback(dev, &event);
}
static void rx_disabled_evt(const struct device *dev)
{
struct uart_event event = {
.type = UART_RX_DISABLED
};
user_callback(dev, &event);
}
static void rx_reset_state(void)
{
nrf_uart_int_disable(uart0_addr,
NRF_UART_INT_MASK_RXDRDY |
NRF_UART_INT_MASK_ERROR |
NRF_UART_INT_MASK_RXTO);
uart0_cb.rx_buffer_length = 0;
uart0_cb.rx_enabled = 0;
uart0_cb.rx_counter = 0;
uart0_cb.rx_offset = 0;
uart0_cb.rx_secondary_buffer_length = 0;
}
static void rx_isr(const struct device *dev)
{
struct uart_event event;
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY);
if (!uart0_cb.rx_buffer_length || !uart0_cb.rx_enabled) {
/* Byte received when receiving is disabled - data lost. */
nrf_uart_rxd_get(uart0_addr);
} else {
if (uart0_cb.rx_counter == 0) {
event.type = UART_RX_BUF_REQUEST;
user_callback(dev, &event);
}
uart0_cb.rx_buffer[uart0_cb.rx_counter] =
nrf_uart_rxd_get(uart0_addr);
uart0_cb.rx_counter++;
if (uart0_cb.rx_timeout == 0) {
rx_rdy_evt(dev);
} else if (uart0_cb.rx_timeout != SYS_FOREVER_MS) {
k_timer_start(&uart0_cb.rx_timeout_timer,
K_MSEC(uart0_cb.rx_timeout),
K_NO_WAIT);
}
}
if (uart0_cb.rx_buffer_length == uart0_cb.rx_counter) {
if (uart0_cb.rx_timeout != SYS_FOREVER_MS) {
k_timer_stop(&uart0_cb.rx_timeout_timer);
}
rx_rdy_evt(dev);
int key = irq_lock();
if (uart0_cb.rx_secondary_buffer_length == 0) {
uart0_cb.rx_enabled = 0;
}
irq_unlock(key);
if (uart0_cb.rx_secondary_buffer_length) {
buf_released_evt(dev);
/* Switch to secondary buffer. */
uart0_cb.rx_buffer_length =
uart0_cb.rx_secondary_buffer_length;
uart0_cb.rx_buffer = uart0_cb.rx_secondary_buffer;
uart0_cb.rx_secondary_buffer_length = 0;
uart0_cb.rx_counter = 0;
uart0_cb.rx_offset = 0;
event.type = UART_RX_BUF_REQUEST;
user_callback(dev, &event);
} else {
uart_nrfx_rx_disable(dev);
}
}
}
static void tx_isr(const struct device *dev)
{
uart0_cb.tx_counter++;
if (uart0_cb.tx_counter < uart0_cb.tx_buffer_length &&
!uart0_cb.tx_abort) {
#if HW_FLOW_CONTROL_AVAILABLE
if (uart0_cb.tx_timeout != SYS_FOREVER_MS) {
k_timer_start(&uart0_cb.tx_timeout_timer,
K_MSEC(uart0_cb.tx_timeout),
K_NO_WAIT);
}
#endif
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY);
uint8_t txd = uart0_cb.tx_buffer[uart0_cb.tx_counter];
nrf_uart_txd_set(uart0_addr, txd);
} else {
#if HW_FLOW_CONTROL_AVAILABLE
if (uart0_cb.tx_timeout != SYS_FOREVER_MS) {
k_timer_stop(&uart0_cb.tx_timeout_timer);
}
#endif
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX);
struct uart_event event = {
.type = UART_TX_DONE,
.data.tx.buf = uart0_cb.tx_buffer,
.data.tx.len = uart0_cb.tx_counter
};
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY);
uart0_cb.tx_buffer_length = 0;
uart0_cb.tx_counter = 0;
uart0_cb.tx_buffer = NULL;
nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_TXDRDY);
user_callback(dev, &event);
}
}
#define UART_ERROR_FROM_MASK(mask) \
(mask & NRF_UART_ERROR_OVERRUN_MASK ? UART_ERROR_OVERRUN \
: mask & NRF_UART_ERROR_PARITY_MASK ? UART_ERROR_PARITY \
: mask & NRF_UART_ERROR_FRAMING_MASK ? UART_ERROR_FRAMING \
: mask & NRF_UART_ERROR_BREAK_MASK ? UART_BREAK \
: 0)
static void error_isr(const struct device *dev)
{
if (uart0_cb.rx_timeout != SYS_FOREVER_MS) {
k_timer_stop(&uart0_cb.rx_timeout_timer);
}
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_ERROR);
if (!uart0_cb.rx_enabled) {
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPRX);
}
struct uart_event event = {
.type = UART_RX_STOPPED,
.data.rx_stop.reason =
UART_ERROR_FROM_MASK(
nrf_uart_errorsrc_get_and_clear(uart0_addr)),
.data.rx_stop.data.len = uart0_cb.rx_counter
- uart0_cb.rx_offset,
.data.rx_stop.data.offset = uart0_cb.rx_offset,
.data.rx_stop.data.buf = uart0_cb.rx_buffer
};
user_callback(dev, &event);
/* Abort transfer. */
uart_nrfx_rx_disable(dev);
}
/*
* In nRF hardware RX timeout can occur only after stopping the peripheral,
* it is used as a sign that peripheral has finished its operation and is
* disabled.
*/
static void rxto_isr(const struct device *dev)
{
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXTO);
/* Send rxrdy if there is any data pending. */
if (uart0_cb.rx_counter - uart0_cb.rx_offset) {
rx_rdy_evt(dev);
}
buf_released_evt(dev);
if (uart0_cb.rx_secondary_buffer_length) {
uart0_cb.rx_buffer = uart0_cb.rx_secondary_buffer;
buf_released_evt(dev);
}
rx_reset_state();
rx_disabled_evt(dev);
}
void uart_nrfx_isr(const struct device *uart)
{
if (nrf_uart_int_enable_check(uart0_addr, NRF_UART_INT_MASK_ERROR) &&
nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_ERROR)) {
error_isr(uart);
} else if (nrf_uart_int_enable_check(uart0_addr,
NRF_UART_INT_MASK_RXDRDY) &&
nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY)) {
rx_isr(uart);
}
if (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_TXDRDY)
&& nrf_uart_int_enable_check(uart0_addr,
NRF_UART_INT_MASK_TXDRDY)) {
tx_isr(uart);
}
if (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXTO)) {
rxto_isr(uart);
}
}
static void rx_timeout(struct k_timer *timer)
{
rx_rdy_evt(DEVICE_DT_GET(DT_DRV_INST(0)));
}
#if HW_FLOW_CONTROL_AVAILABLE
static void tx_timeout(struct k_timer *timer)
{
struct uart_event evt;
if (uart0_cb.tx_timeout != SYS_FOREVER_MS) {
k_timer_stop(&uart0_cb.tx_timeout_timer);
}
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX);
evt.type = UART_TX_ABORTED;
evt.data.tx.buf = uart0_cb.tx_buffer;
evt.data.tx.len = uart0_cb.tx_buffer_length;
uart0_cb.tx_buffer_length = 0;
uart0_cb.tx_counter = 0;
user_callback(DEVICE_DT_GET(DT_DRV_INST(0)), &evt);
}
#endif
#endif /* CONFIG_UART_0_ASYNC */
#ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
/** Interrupt driven FIFO fill function */
static int uart_nrfx_fifo_fill(const struct device *dev,
const uint8_t *tx_data,
int len)
{
uint8_t num_tx = 0U;
while ((len - num_tx > 0) &&
event_txdrdy_check()) {
/* Clear the interrupt */
event_txdrdy_clear();
/* Send a character */
nrf_uart_txd_set(uart0_addr, (uint8_t)tx_data[num_tx++]);
}
return (int)num_tx;
}
/** Interrupt driven FIFO read function */
static int uart_nrfx_fifo_read(const struct device *dev,
uint8_t *rx_data,
const int size)
{
uint8_t num_rx = 0U;
while ((size - num_rx > 0) &&
nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY)) {
/* Clear the interrupt */
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY);
/* Receive a character */
rx_data[num_rx++] = (uint8_t)nrf_uart_rxd_get(uart0_addr);
}
return num_rx;
}
/** Interrupt driven transfer enabling function */
static void uart_nrfx_irq_tx_enable(const struct device *dev)
{
uint32_t key;
disable_tx_irq = false;
/* Indicate that this device started a transaction that should not be
* interrupted by putting the SoC into the deep sleep mode.
*/
device_busy_set(dev);
/* Activate the transmitter. */
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTTX);
nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_TXDRDY);
/* Critical section is used to avoid any UART related interrupt which
* can occur after the if statement and before call of the function
* forcing an interrupt.
*/
key = irq_lock();
if (uart_sw_event_txdrdy) {
/* Due to HW limitation first TXDRDY interrupt shall be
* triggered by the software.
*/
NVIC_SetPendingIRQ(IRQN);
}
irq_unlock(key);
}
/** Interrupt driven transfer disabling function */
static void uart_nrfx_irq_tx_disable(const struct device *dev)
{
/* Disable TX interrupt in uart_nrfx_isr() when transmission is done. */
disable_tx_irq = true;
}
/** Interrupt driven receiver enabling function */
static void uart_nrfx_irq_rx_enable(const struct device *dev)
{
nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_RXDRDY);
}
/** Interrupt driven receiver disabling function */
static void uart_nrfx_irq_rx_disable(const struct device *dev)
{
nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_RXDRDY);
}
/** Interrupt driven transfer empty function */
static int uart_nrfx_irq_tx_ready_complete(const struct device *dev)
{
/* Signal TX readiness only when the TX interrupt is enabled and there
* is no pending request to disable it. Note that this function may get
* called after the TX interrupt is requested to be disabled but before
* the disabling is actually performed (in the IRQ handler).
*/
return nrf_uart_int_enable_check(uart0_addr,
NRF_UART_INT_MASK_TXDRDY) &&
!disable_tx_irq &&
event_txdrdy_check();
}
/** Interrupt driven receiver ready function */
static int uart_nrfx_irq_rx_ready(const struct device *dev)
{
return nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY);
}
/** Interrupt driven error enabling function */
static void uart_nrfx_irq_err_enable(const struct device *dev)
{
nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_ERROR);
}
/** Interrupt driven error disabling function */
static void uart_nrfx_irq_err_disable(const struct device *dev)
{
nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_ERROR);
}
/** Interrupt driven pending status function */
static int uart_nrfx_irq_is_pending(const struct device *dev)
{
return ((nrf_uart_int_enable_check(uart0_addr,
NRF_UART_INT_MASK_TXDRDY) &&
uart_nrfx_irq_tx_ready_complete(dev))
||
(nrf_uart_int_enable_check(uart0_addr,
NRF_UART_INT_MASK_RXDRDY) &&
uart_nrfx_irq_rx_ready(dev)));
}
/** Interrupt driven interrupt update function */
static int uart_nrfx_irq_update(const struct device *dev)
{
return 1;
}
/** Set the callback function */
static void uart_nrfx_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
(void)dev;
irq_callback = cb;
irq_cb_data = cb_data;
}
/**
* @brief Interrupt service routine.
*
* This simply calls the callback function, if one exists.
*
* @param arg Argument to ISR.
*
* @return N/A
*/
static void uart_nrfx_isr(const struct device *dev)
{
if (disable_tx_irq &&
nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_TXDRDY)) {
nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_TXDRDY);
/* Deactivate the transmitter so that it does not needlessly
* consume power.
*/
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX);
/* The transaction is over. It is okay to enter the deep sleep
* mode if needed.
*/
device_busy_clear(dev);
disable_tx_irq = false;
return;
}
if (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_ERROR)) {
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_ERROR);
}
if (irq_callback) {
irq_callback(dev, irq_cb_data);
}
}
#endif /* CONFIG_UART_0_INTERRUPT_DRIVEN */
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev UART device struct
*
* @return 0 on success
*/
static int uart_nrfx_init(const struct device *dev)
{
int err;
nrf_uart_disable(uart0_addr);
/* Setting default height state of the TX PIN to avoid glitches
* on the line during peripheral activation/deactivation.
*/
nrf_gpio_pin_write(TX_PIN, 1);
nrf_gpio_cfg_output(TX_PIN);
if (RX_PIN_USED) {
nrf_gpio_cfg_input(RX_PIN, NRF_GPIO_PIN_NOPULL);
}
nrf_uart_txrx_pins_set(uart0_addr, TX_PIN, RX_PIN);
if (HAS_PROP(rts_pin)) {
/* Setting default height state of the RTS PIN to avoid glitches
* on the line during peripheral activation/deactivation.
*/
nrf_gpio_pin_write(RTS_PIN, 1);
nrf_gpio_cfg_output(RTS_PIN);
}
if (HAS_PROP(cts_pin)) {
nrf_gpio_cfg_input(CTS_PIN, NRF_GPIO_PIN_NOPULL);
}
nrf_uart_hwfc_pins_set(uart0_addr, RTS_PIN, CTS_PIN);
/* Set initial configuration */
err = uart_nrfx_configure(dev, &get_dev_data(dev)->uart_config);
if (err) {
return err;
}
/* Enable the UART and activate its receiver. With the current API
* the receiver needs to be active all the time. The transmitter
* will be activated when there is something to send.
*/
nrf_uart_enable(uart0_addr);
if (RX_PIN_USED) {
nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY);
nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTRX);
}
#ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
/* Simulate that the TXDRDY event is set, so that the transmitter status
* is indicated correctly.
*/
uart_sw_event_txdrdy = 1U;
#endif
#if defined(CONFIG_UART_0_ASYNC) || defined(CONFIG_UART_0_INTERRUPT_DRIVEN)
IRQ_CONNECT(IRQN,
IRQ_PRIO,
uart_nrfx_isr,
DEVICE_DT_GET(DT_DRV_INST(0)),
0);
irq_enable(IRQN);
#endif
#ifdef CONFIG_UART_0_ASYNC
k_timer_init(&uart0_cb.rx_timeout_timer, rx_timeout, NULL);
#if HW_FLOW_CONTROL_AVAILABLE
k_timer_init(&uart0_cb.tx_timeout_timer, tx_timeout, NULL);
#endif
#endif
return 0;
}
/* Common function: uart_nrfx_irq_tx_ready_complete is used for two API entries
* because Nordic hardware does not distinguish between them.
*/
static const struct uart_driver_api uart_nrfx_uart_driver_api = {
#ifdef CONFIG_UART_0_ASYNC
.callback_set = uart_nrfx_callback_set,
.tx = uart_nrfx_tx,
.tx_abort = uart_nrfx_tx_abort,
.rx_enable = uart_nrfx_rx_enable,
.rx_buf_rsp = uart_nrfx_rx_buf_rsp,
.rx_disable = uart_nrfx_rx_disable,
#endif /* CONFIG_UART_0_ASYNC */
.poll_in = uart_nrfx_poll_in,
.poll_out = uart_nrfx_poll_out,
.err_check = uart_nrfx_err_check,
.configure = uart_nrfx_configure,
.config_get = uart_nrfx_config_get,
#ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
.fifo_fill = uart_nrfx_fifo_fill,
.fifo_read = uart_nrfx_fifo_read,
.irq_tx_enable = uart_nrfx_irq_tx_enable,
.irq_tx_disable = uart_nrfx_irq_tx_disable,
.irq_tx_ready = uart_nrfx_irq_tx_ready_complete,
.irq_rx_enable = uart_nrfx_irq_rx_enable,
.irq_rx_disable = uart_nrfx_irq_rx_disable,
.irq_tx_complete = uart_nrfx_irq_tx_ready_complete,
.irq_rx_ready = uart_nrfx_irq_rx_ready,
.irq_err_enable = uart_nrfx_irq_err_enable,
.irq_err_disable = uart_nrfx_irq_err_disable,
.irq_is_pending = uart_nrfx_irq_is_pending,
.irq_update = uart_nrfx_irq_update,
.irq_callback_set = uart_nrfx_irq_callback_set,
#endif /* CONFIG_UART_0_INTERRUPT_DRIVEN */
};
#ifdef CONFIG_PM_DEVICE
static void uart_nrfx_pins_enable(const struct device *dev, bool enable)
{
if (!IS_ENABLED(CONFIG_UART_0_GPIO_MANAGEMENT)) {
return;
}
uint32_t tx_pin = nrf_uart_tx_pin_get(uart0_addr);
uint32_t rx_pin = nrf_uart_rx_pin_get(uart0_addr);
uint32_t cts_pin = nrf_uart_cts_pin_get(uart0_addr);
uint32_t rts_pin = nrf_uart_rts_pin_get(uart0_addr);
if (enable) {
nrf_gpio_pin_write(tx_pin, 1);
nrf_gpio_cfg_output(tx_pin);
if (RX_PIN_USED) {
nrf_gpio_cfg_input(rx_pin, NRF_GPIO_PIN_NOPULL);
}
if (HAS_PROP(rts_pin)) {
nrf_gpio_pin_write(rts_pin, 1);
nrf_gpio_cfg_output(rts_pin);
}
if (HAS_PROP(cts_pin)) {
nrf_gpio_cfg_input(cts_pin,
NRF_GPIO_PIN_NOPULL);
}
} else {
nrf_gpio_cfg_default(tx_pin);
if (RX_PIN_USED) {
nrf_gpio_cfg_default(rx_pin);
}
if (HAS_PROP(rts_pin)) {
nrf_gpio_cfg_default(rts_pin);
}
if (HAS_PROP(cts_pin)) {
nrf_gpio_cfg_default(cts_pin);
}
}
}
static void uart_nrfx_set_power_state(const struct device *dev,
uint32_t new_state)
{
if (new_state == DEVICE_PM_ACTIVE_STATE) {
uart_nrfx_pins_enable(dev, true);
nrf_uart_enable(uart0_addr);
if (RX_PIN_USED) {
nrf_uart_task_trigger(uart0_addr,
NRF_UART_TASK_STARTRX);
}
} else {
__ASSERT_NO_MSG(new_state == DEVICE_PM_LOW_POWER_STATE ||
new_state == DEVICE_PM_SUSPEND_STATE ||
new_state == DEVICE_PM_OFF_STATE);
nrf_uart_disable(uart0_addr);
uart_nrfx_pins_enable(dev, false);
}
}
static int uart_nrfx_pm_control(const struct device *dev,
uint32_t ctrl_command,
void *context, device_pm_cb cb, void *arg)
{
static uint32_t current_state = DEVICE_PM_ACTIVE_STATE;
if (ctrl_command == DEVICE_PM_SET_POWER_STATE) {
uint32_t new_state = *((const uint32_t *)context);
if (new_state != current_state) {
uart_nrfx_set_power_state(dev, new_state);
current_state = new_state;
}
} else {
__ASSERT_NO_MSG(ctrl_command == DEVICE_PM_GET_POWER_STATE);
*((uint32_t *)context) = current_state;
}
if (cb) {
cb(dev, 0, context, arg);
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
static struct uart_nrfx_data uart_nrfx_uart0_data = {
.uart_config = {
.stop_bits = UART_CFG_STOP_BITS_1,
.data_bits = UART_CFG_DATA_BITS_8,
.baudrate = BAUDRATE,
#ifdef CONFIG_UART_0_NRF_PARITY_BIT
.parity = UART_CFG_PARITY_EVEN,
#else
.parity = UART_CFG_PARITY_NONE,
#endif /* CONFIG_UART_0_NRF_PARITY_BIT */
.flow_ctrl = PROP(hw_flow_control) ?
UART_CFG_FLOW_CTRL_RTS_CTS : UART_CFG_FLOW_CTRL_NONE,
}
};
DEVICE_DT_INST_DEFINE(0,
uart_nrfx_init,
uart_nrfx_pm_control,
&uart_nrfx_uart0_data,
NULL,
/* Initialize UART device before UART console. */
PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_nrfx_uart_driver_api);