blob: bdebcea485257ec53a420a9a0e92cbd4e83d61dd [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr.h>
#include <tc_util.h>
#include <ztest.h>
#include <kernel.h>
#include <ksched.h>
#include <kernel_structs.h>
#if CONFIG_MP_NUM_CPUS < 2
#error SMP test requires at least two CPUs!
#endif
#define T2_STACK_SIZE 2048
#define STACK_SIZE (384 + CONFIG_TEST_EXTRA_STACKSIZE)
#define DELAY_US 50000
#define TIMEOUT 1000
#define EQUAL_PRIORITY 1
#define TIME_SLICE_MS 500
#define THREAD_DELAY 1
struct k_thread t2;
K_THREAD_STACK_DEFINE(t2_stack, T2_STACK_SIZE);
volatile int t2_count;
volatile int sync_count = -1;
K_SEM_DEFINE(cpuid_sema, 0, 1);
K_SEM_DEFINE(sema, 0, 1);
#define THREADS_NUM CONFIG_MP_NUM_CPUS
struct thread_info {
k_tid_t tid;
int executed;
int priority;
int cpu_id;
};
static struct thread_info tinfo[THREADS_NUM];
static struct k_thread tthread[THREADS_NUM];
static K_THREAD_STACK_ARRAY_DEFINE(tstack, THREADS_NUM, STACK_SIZE);
static int thread_started[THREADS_NUM - 1];
static int pending;
/**
* @brief Tests for SMP
* @defgroup kernel_smp_tests SMP Tests
* @ingroup all_tests
* @{
* @}
*/
static void t2_fn(void *a, void *b, void *c)
{
ARG_UNUSED(a);
ARG_UNUSED(b);
ARG_UNUSED(c);
t2_count = 0;
/* This thread simply increments a counter while spinning on
* the CPU. The idea is that it will always be iterating
* faster than the other thread so long as it is fairly
* scheduled (and it's designed to NOT be fairly schedulable
* without a separate CPU!), so the main thread can always
* check its progress.
*/
while (1) {
k_busy_wait(DELAY_US);
t2_count++;
}
}
/**
* @brief Verify SMP with 2 cooperative threads
*
* @ingroup kernel_smp_tests
*
* @details Multi processing is verified by checking whether
* 2 cooperative threads run simultaneously at different cores
*/
void test_smp_coop_threads(void)
{
int i, ok = 1;
k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, t2_fn,
NULL, NULL, NULL,
K_PRIO_COOP(2), 0, K_NO_WAIT);
/* Wait for the other thread (on a separate CPU) to actually
* start running. We want synchrony to be as perfect as
* possible.
*/
t2_count = -1;
while (t2_count == -1) {
}
for (i = 0; i < 10; i++) {
/* Wait slightly longer than the other thread so our
* count will always be lower
*/
k_busy_wait(DELAY_US + (DELAY_US / 8));
if (t2_count <= i) {
ok = 0;
break;
}
}
k_thread_abort(tid);
zassert_true(ok, "SMP test failed");
}
static void child_fn(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p2);
ARG_UNUSED(p3);
int parent_cpu_id = (int)p1;
zassert_true(parent_cpu_id != _arch_curr_cpu()->id,
"Parent isn't on other core");
sync_count++;
k_sem_give(&cpuid_sema);
}
/**
* @brief Verify CPU IDs of threads in SMP
*
* @ingroup kernel_smp_tests
*
* @details Verify whether thread running on other core is
* parent thread from child thread
*/
void test_cpu_id_threads(void)
{
/* Make sure idle thread runs on each core */
k_sleep(1000);
int parent_cpu_id = _arch_curr_cpu()->id;
k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE,
child_fn, (void *)parent_cpu_id, NULL,
NULL, K_PRIO_PREEMPT(2), 0, K_NO_WAIT);
while (sync_count == -1) {
}
k_sem_take(&cpuid_sema, K_FOREVER);
k_thread_abort(tid);
}
static void thread_entry(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p2);
ARG_UNUSED(p3);
int thread_num = (int)p1;
int count = 0;
tinfo[thread_num].executed = 1;
tinfo[thread_num].cpu_id = _arch_curr_cpu()->id;
while (count++ < 5) {
k_busy_wait(DELAY_US);
}
}
static void spawn_threads(int prio, int thread_num,
int equal_prio, k_thread_entry_t thread_entry, int delay)
{
int i;
/* Spawn threads of priority higher than
* the previously created thread
*/
for (i = 0; i < thread_num; i++) {
if (equal_prio) {
tinfo[i].priority = prio;
} else {
/* Increase priority for each thread */
tinfo[i].priority = prio - 1;
prio = tinfo[i].priority;
}
tinfo[i].tid = k_thread_create(&tthread[i], tstack[i],
STACK_SIZE, thread_entry,
(void *)i, NULL, NULL,
tinfo[i].priority, 0, delay);
if (delay) {
/* Increase delay for each thread */
delay = delay + 10;
}
}
}
static void abort_threads(int num)
{
for (int i = 0; i < num; i++) {
k_thread_abort(tinfo[i].tid);
}
}
static void cleanup_resources(void)
{
for (int i = 0; i < THREADS_NUM; i++) {
tinfo[i].tid = 0;
tinfo[i].executed = 0;
tinfo[i].priority = 0;
}
}
/**
* @brief Test cooperative threads non-preemption
*
* @ingroup kernel_smp_tests
*
* @details Spawn cooperative threads equal to number of cores
* supported. Main thread will already be running on 1 core.
* Check if the last thread created preempts any threads
* already running.
*/
void test_coop_resched_threads(void)
{
/* Spawn threads equal to number of cores,
* since we don't give up current CPU, last thread
* will not get scheduled
*/
spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY,
&thread_entry, THREAD_DELAY);
/* Wait for some time to let other core's thread run */
k_busy_wait(DELAY_US);
/* Reassure that cooperative thread's are not preempted
* by checking last thread's execution
* status. We know that all threads got rescheduled on
* other cores except the last one
*/
for (int i = 0; i < THREADS_NUM - 1; i++) {
zassert_true(tinfo[i].executed == 1,
"cooperative thread %d didn't run", i);
}
zassert_true(tinfo[THREADS_NUM - 1].executed == 0,
"cooperative thread is preempted");
/* Abort threads created */
abort_threads(THREADS_NUM);
cleanup_resources();
}
/**
* @brief Test preemptness of preemptive thread
*
* @ingroup kernel_smp_tests
*
* @details Create preemptive thread and let it run
* on another core and verify if it gets preempted
* if another thread of higher priority is spawned
*/
void test_preempt_resched_threads(void)
{
/* Spawn threads equal to number of cores,
* lower priority thread should
* be preempted by higher ones
*/
spawn_threads(K_PRIO_PREEMPT(10), THREADS_NUM, !EQUAL_PRIORITY,
&thread_entry, THREAD_DELAY);
/* Wait for some time to let all threads run */
k_busy_wait(DELAY_US);
for (int i = 0; i < THREADS_NUM; i++) {
zassert_true(tinfo[i].executed == 1,
"preemptive thread %d didn't run", i);
}
/* Abort threads created */
abort_threads(THREADS_NUM);
cleanup_resources();
}
/**
* @brief Validate behavior of thread when it yields
*
* @ingroup kernel_smp_tests
*
* @details Spawn cooperative threads equal to number
* of cores, so last thread would be pending, call
* yield() from main thread. Now, all threads must be
* executed
*/
void test_yield_threads(void)
{
/* Spawn threads equal to the number
* of cores, so the last thread would be
* pending.
*/
spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY,
&thread_entry, !THREAD_DELAY);
k_yield();
k_busy_wait(DELAY_US);
for (int i = 0; i < THREADS_NUM; i++) {
zassert_true(tinfo[i].executed == 1,
"thread %d did not execute", i);
}
abort_threads(THREADS_NUM);
cleanup_resources();
}
/**
* @brief Test behavior of thread when it sleeps
*
* @ingroup kernel_smp_tests
*
* @details Spawn cooperative thread and call
* sleep() from main thread. After timeout, all
* threads has to be scheduled.
*/
void test_sleep_threads(void)
{
spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY,
&thread_entry, !THREAD_DELAY);
k_sleep(TIMEOUT);
for (int i = 0; i < THREADS_NUM; i++) {
zassert_true(tinfo[i].executed == 1,
"thread %d did not execute", i);
}
abort_threads(THREADS_NUM);
cleanup_resources();
}
static void thread_wakeup_entry(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p2);
ARG_UNUSED(p3);
int thread_num = (int)p1;
thread_started[thread_num] = 1;
if (pending) {
k_sem_take(&sema, DELAY_US * 1000);
} else {
k_sleep(DELAY_US * 1000);
}
tinfo[thread_num].executed = 1;
}
static void wakeup_on_start_thread(int tnum)
{
int threads_started = 0, i;
for (i = 0; i < tnum; i++) {
/* Give it some time to start */
k_busy_wait(DELAY_US);
if (thread_started[i] == 1 && threads_started <= tnum) {
threads_started++;
k_wakeup(tinfo[i].tid);
}
}
zassert_equal(threads_started, tnum,
"All threads haven't started");
}
static void check_wokeup_threads(int tnum)
{
int threads_woke_up = 0, i;
for (i = 0; i < tnum; i++) {
if (tinfo[i].executed == 1 && threads_woke_up <= tnum) {
threads_woke_up++;
}
}
if (pending) {
zassert_not_equal(threads_woke_up, tnum,
"Pending thread woke up!");
} else {
zassert_equal(threads_woke_up, tnum,
"Threads did not wakeup");
}
}
/**
* @brief Test behavior of wakeup() in SMP case
*
* @ingroup kernel_smp_tests
*
* @details Spawn number of threads equal to number of
* remaining cores and let them sleep for a while. Call
* wakeup() of those threads from parent thread and check
* if they are all running
*/
void test_wakeup_threads(void)
{
/* Spawn threads to run on all remaining cores */
spawn_threads(K_PRIO_COOP(10), THREADS_NUM - 1, !EQUAL_PRIORITY,
&thread_wakeup_entry, !THREAD_DELAY);
/* Check if all the threads have started, then call wakeup */
wakeup_on_start_thread(THREADS_NUM - 1);
/* Count threads which are woken up */
check_wokeup_threads(THREADS_NUM - 1);
/* Abort all threads and cleanup */
abort_threads(THREADS_NUM - 1);
cleanup_resources();
}
/**
* @brief Test wakeup() call on pending threads
*
* @ingroup kernel_smp_tests
*
* @details Spawn threads to run on remaining cores and
* make them pend on a semaphore. Call wakeup() from
* parent thread. Check if the threads have woken up
*/
void test_wakeup_pending_threads(void)
{
pending = 1;
test_wakeup_threads();
}
void test_main(void)
{
/* Sleep a bit to guarantee that both CPUs enter an idle
* thread from which they can exit correctly to run the main
* test.
*/
k_sleep(1000);
ztest_test_suite(smp,
ztest_unit_test(test_smp_coop_threads),
ztest_unit_test(test_cpu_id_threads),
ztest_unit_test(test_coop_resched_threads),
ztest_unit_test(test_preempt_resched_threads),
ztest_unit_test(test_yield_threads),
ztest_unit_test(test_sleep_threads),
ztest_unit_test(test_wakeup_threads),
ztest_unit_test(test_wakeup_pending_threads)
);
ztest_run_test_suite(smp);
}