blob: 78a432e915157af3f8059456cb281c95a928ddaa [file] [log] [blame]
/*
* Copyright (c) 2017 Google LLC.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <logging/log.h>
LOG_MODULE_REGISTER(sdhc, CONFIG_DISK_LOG_LEVEL);
#include <disk_access.h>
#include <gpio.h>
#include <misc/byteorder.h>
#include <spi.h>
#include <crc.h>
#define SDHC_SECTOR_SIZE 512
#define SDHC_CMD_SIZE 6
#define SDHC_CMD_BODY_SIZE (SDHC_CMD_SIZE - 1)
#define SDHC_CRC16_SIZE 2
/* Command IDs */
#define SDHC_GO_IDLE_STATE 0
#define SDHC_SEND_IF_COND 8
#define SDHC_SEND_CSD 9
#define SDHC_SEND_CID 10
#define SDHC_STOP_TRANSMISSION 12
#define SDHC_SEND_STATUS 13
#define SDHC_READ_SINGLE_BLOCK 17
#define SDHC_READ_MULTIPLE_BLOCK 18
#define SDHC_WRITE_BLOCK 24
#define SDHC_WRITE_MULTIPLE_BLOCK 25
#define SDHC_APP_CMD 55
#define SDHC_READ_OCR 58
#define SDHC_CRC_ON_OFF 59
#define SDHC_SEND_OP_COND 41
/* Command flags */
#define SDHC_START 0x80
#define SDHC_TX 0x40
/* Fields in various card registers */
#define SDHC_HCS (1 << 30)
#define SDHC_CCS (1 << 30)
#define SDHC_VHS_MASK (0x0F << 8)
#define SDHC_VHS_3V3 (1 << 8)
#define SDHC_CHECK 0xAA
#define SDHC_CSD_SIZE 16
#define SDHC_CSD_V2 1
/* R1 response status */
#define SDHC_R1_IDLE 0x01
#define SDHC_R1_ERASE_RESET 0x02
#define SDHC_R1_ILLEGAL_COMMAND 0x04
#define SDHC_R1_COM_CRC 0x08
#define SDHC_R1_ERASE_SEQ 0x10
#define SDHC_R1_ADDRESS 0x20
#define SDHC_R1_PARAMETER 0x40
/* Data block tokens */
#define SDHC_TOKEN_SINGLE 0xFE
#define SDHC_TOKEN_MULTI_WRITE 0xFC
#define SDHC_TOKEN_STOP_TRAN 0xFD
/* Data block responses */
#define SDHC_RESPONSE_ACCEPTED 0x05
#define SDHC_RESPONSE_CRC_ERR 0x0B
#define SDHC_RESPONSE_WRITE_ERR 0x0E
/* Clock speed used during initialisation */
#define SDHC_INITIAL_SPEED 400000
/* Clock speed used after initialisation */
#define SDHC_SPEED 4000000
#define SDHC_MIN_TRIES 20
#define SDHC_RETRY_DELAY K_MSEC(20)
/* Time to wait for the card to initialise */
#define SDHC_INIT_TIMEOUT K_MSEC(5000)
/* Time to wait for the card to respond or come ready */
#define SDHC_READY_TIMEOUT K_MSEC(500)
struct sdhc_data {
struct device *spi;
struct spi_config cfg;
struct device *cs;
u32_t pin;
u32_t sector_count;
u8_t status;
int trace_dir;
};
struct sdhc_retry {
u32_t end;
s16_t tries;
u16_t sleep;
};
struct sdhc_flag_map {
u8_t mask;
u8_t err;
};
DEVICE_DECLARE(sdhc_0);
/* The SD protocol requires sending ones while reading but Zephyr
* defaults to writing zeros.
*/
static const u8_t sdhc_ones[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
};
BUILD_ASSERT(sizeof(sdhc_ones) % SDHC_CSD_SIZE == 0);
BUILD_ASSERT(SDHC_SECTOR_SIZE % sizeof(sdhc_ones) == 0);
/* Maps R1 response flags to error codes */
static const struct sdhc_flag_map sdhc_r1_flags[] = {
{SDHC_R1_PARAMETER, EFAULT}, {SDHC_R1_ADDRESS, EFAULT},
{SDHC_R1_ILLEGAL_COMMAND, EINVAL}, {SDHC_R1_COM_CRC, EILSEQ},
{SDHC_R1_ERASE_SEQ, EIO}, {SDHC_R1_ERASE_RESET, EIO},
{SDHC_R1_IDLE, ECONNRESET}, {0, 0},
};
/* Maps disk status flags to error codes */
static const struct sdhc_flag_map sdhc_disk_status_flags[] = {
{DISK_STATUS_UNINIT, ENODEV},
{DISK_STATUS_NOMEDIA, ENOENT},
{DISK_STATUS_WR_PROTECT, EROFS},
{0, 0},
};
/* Maps data block flags to error codes */
static const struct sdhc_flag_map sdhc_data_response_flags[] = {
{SDHC_RESPONSE_WRITE_ERR, EIO},
{SDHC_RESPONSE_CRC_ERR, EILSEQ},
{SDHC_RESPONSE_ACCEPTED, 0},
/* Unrecognised value */
{0, EPROTO},
};
/* Traces card traffic for LOG_LEVEL_DBG */
static int sdhc_trace(struct sdhc_data *data, int dir, int err,
const u8_t *buf, int len)
{
#if LOG_LEVEL >= LOG_LEVEL_DBG
if (err != 0) {
printk("(err=%d)", err);
data->trace_dir = 0;
}
if (dir != data->trace_dir) {
data->trace_dir = dir;
printk("\n");
if (dir == 1) {
printk(">>");
} else if (dir == -1) {
printk("<<");
}
}
for (; len != 0; len--) {
printk(" %x", *buf++);
}
#endif
return err;
}
/* Returns true if an error code is retryable at the disk layer */
static bool sdhc_is_retryable(int err)
{
switch (err) {
case 0:
return false;
case -EILSEQ:
case -EIO:
case -ETIMEDOUT:
return true;
default:
return false;
}
}
/* Maps a flag based error code into a Zephyr errno */
static int sdhc_map_flags(const struct sdhc_flag_map *map, int flags)
{
if (flags < 0) {
return flags;
}
for (; map->mask != 0U; map++) {
if ((flags & map->mask) == map->mask) {
return -map->err;
}
}
return -map->err;
}
/* Converts disk status into an error code */
static int sdhc_map_disk_status(int status)
{
return sdhc_map_flags(sdhc_disk_status_flags, status);
}
/* Converts the R1 response flags into an error code */
static int sdhc_map_r1_status(int status)
{
return sdhc_map_flags(sdhc_r1_flags, status);
}
/* Converts an eary stage idle mode R1 code into an error code */
static int sdhc_map_r1_idle_status(int status)
{
if (status < 0) {
return status;
}
if (status == SDHC_R1_IDLE) {
return 0;
}
return sdhc_map_r1_status(status);
}
/* Converts the data block response flags into an error code */
static int sdhc_map_data_status(int status)
{
return sdhc_map_flags(sdhc_data_response_flags, status);
}
/* Initialises a retry helper */
static void sdhc_retry_init(struct sdhc_retry *retry, u32_t timeout,
u16_t sleep)
{
retry->end = k_uptime_get_32() + timeout;
retry->tries = 0;
retry->sleep = sleep;
}
/* Called at the end of a retry loop. Returns if the minimum try
* count and timeout has passed. Delays/yields on retry.
*/
static bool sdhc_retry_ok(struct sdhc_retry *retry)
{
s32_t remain = retry->end - k_uptime_get_32();
if (retry->tries < SDHC_MIN_TRIES) {
retry->tries++;
if (retry->sleep != 0U) {
k_sleep(retry->sleep);
}
return true;
}
if (remain >= 0) {
if (retry->sleep > 0) {
k_sleep(retry->sleep);
} else {
k_yield();
}
return true;
}
return false;
}
/* Asserts or deasserts chip select */
static void sdhc_set_cs(struct sdhc_data *data, int value)
{
gpio_pin_write(data->cs, data->pin, value);
}
/* Receives a fixed number of bytes */
static int sdhc_rx_bytes(struct sdhc_data *data, u8_t *buf, int len)
{
struct spi_buf tx_bufs[] = {
{
.buf = (u8_t *)sdhc_ones,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = tx_bufs,
.count = 1,
};
struct spi_buf rx_bufs[] = {
{
.buf = buf,
.len = len
}
};
const struct spi_buf_set rx = {
.buffers = rx_bufs,
.count = 1,
};
return sdhc_trace(data, -1,
spi_transceive(data->spi, &data->cfg, &tx, &rx),
buf, len);
}
/* Receives and returns a single byte */
static int sdhc_rx_u8(struct sdhc_data *data)
{
u8_t buf[1];
int err = sdhc_rx_bytes(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
return buf[0];
}
/* Transmits a block of bytes */
static int sdhc_tx(struct sdhc_data *data, const u8_t *buf, int len)
{
struct spi_buf spi_bufs[] = {
{
.buf = (u8_t *)buf,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = spi_bufs,
.count = 1
};
return sdhc_trace(data, 1, spi_write(data->spi, &data->cfg, &tx), buf,
len);
}
/* Transmits the command and payload */
static int sdhc_tx_cmd(struct sdhc_data *data, u8_t cmd, u32_t payload)
{
u8_t buf[SDHC_CMD_SIZE];
LOG_DBG("cmd%d payload=%u", cmd, payload);
sdhc_trace(data, 0, 0, NULL, 0);
/* Encode the command */
buf[0] = SDHC_TX | (cmd & ~SDHC_START);
sys_put_be32(payload, &buf[1]);
buf[SDHC_CMD_BODY_SIZE] = crc7_be(0, buf, SDHC_CMD_BODY_SIZE);
return sdhc_tx(data, buf, sizeof(buf));
}
/* Reads until anything but `discard` is received */
static int sdhc_skip(struct sdhc_data *data, int discard)
{
int err;
struct sdhc_retry retry;
sdhc_retry_init(&retry, SDHC_READY_TIMEOUT, 0);
do {
err = sdhc_rx_u8(data);
if (err != discard) {
return err;
}
} while (sdhc_retry_ok(&retry));
LOG_WRN("Timeout while waiting for !%d", discard);
return -ETIMEDOUT;
}
/* Reads until the first byte in a response is received */
static int sdhc_skip_until_start(struct sdhc_data *data)
{
struct sdhc_retry retry;
int status;
sdhc_retry_init(&retry, SDHC_READY_TIMEOUT, 0);
do {
status = sdhc_rx_u8(data);
if (status < 0) {
return status;
}
if ((status & SDHC_START) == 0) {
return status;
}
} while (sdhc_retry_ok(&retry));
return -ETIMEDOUT;
}
/* Reads until the bus goes high */
static int sdhc_skip_until_ready(struct sdhc_data *data)
{
struct sdhc_retry retry;
int status;
sdhc_retry_init(&retry, SDHC_READY_TIMEOUT, 0);
do {
status = sdhc_rx_u8(data);
if (status < 0) {
return status;
}
if (status == 0) {
/* Card is still busy */
continue;
}
if (status == 0xFF) {
return 0;
}
/* Got something else. Some cards release MISO part
* way through the transfer. Read another and see if
* MISO went high.
*/
status = sdhc_rx_u8(data);
if (status < 0) {
return status;
}
if (status == 0xFF) {
return 0;
}
return -EPROTO;
} while (sdhc_retry_ok(&retry));
return -ETIMEDOUT;
}
/* Sends a command and returns the received R1 status code */
static int sdhc_cmd_r1_raw(struct sdhc_data *data, u8_t cmd, u32_t payload)
{
int err;
err = sdhc_tx_cmd(data, cmd, payload);
if (err != 0) {
return err;
}
err = sdhc_skip_until_start(data);
/* Ensure there's a idle byte between commands */
if (cmd != SDHC_SEND_CSD && cmd != SDHC_SEND_CID &&
cmd != SDHC_READ_SINGLE_BLOCK && cmd != SDHC_READ_MULTIPLE_BLOCK &&
cmd != SDHC_WRITE_BLOCK && cmd != SDHC_WRITE_MULTIPLE_BLOCK) {
sdhc_rx_u8(data);
}
return err;
}
/* Sends a command and returns the mapped error code */
static int sdhc_cmd_r1(struct sdhc_data *data, u8_t cmd, uint32_t payload)
{
return sdhc_map_r1_status(sdhc_cmd_r1_raw(data, cmd, payload));
}
/* Sends a command in idle mode returns the mapped error code */
static int sdhc_cmd_r1_idle(struct sdhc_data *data, u8_t cmd,
uint32_t payload)
{
return sdhc_map_r1_idle_status(sdhc_cmd_r1_raw(data, cmd, payload));
}
/* Sends a command and returns the received multi-byte R2 status code */
static int sdhc_cmd_r2(struct sdhc_data *data, u8_t cmd, uint32_t payload)
{
int err;
int r1;
int r2;
err = sdhc_tx_cmd(data, cmd, payload);
if (err != 0) {
return err;
}
r1 = sdhc_map_r1_status(sdhc_skip_until_start(data));
/* Always read the rest of the reply */
r2 = sdhc_rx_u8(data);
/* Ensure there's a idle byte between commands */
sdhc_rx_u8(data);
if (r1 < 0) {
return r1;
}
return r2;
}
/* Sends a command and returns the received multi-byte status code */
static int sdhc_cmd_r37_raw(struct sdhc_data *data, u8_t cmd, u32_t payload,
u32_t *reply)
{
int err;
int status;
u8_t buf[sizeof(*reply)];
err = sdhc_tx_cmd(data, cmd, payload);
if (err != 0) {
return err;
}
status = sdhc_skip_until_start(data);
/* Always read the rest of the reply */
err = sdhc_rx_bytes(data, buf, sizeof(buf));
*reply = sys_get_be32(buf);
/* Ensure there's a idle byte between commands */
sdhc_rx_u8(data);
if (err != 0) {
return err;
}
return status;
}
/* Sends a command in idle mode returns the mapped error code */
static int sdhc_cmd_r7_idle(struct sdhc_data *data, u8_t cmd, u32_t payload,
u32_t *reply)
{
return sdhc_map_r1_idle_status(
sdhc_cmd_r37_raw(data, cmd, payload, reply));
}
/* Sends a command and returns the received multi-byte R3 error code */
static int sdhc_cmd_r3(struct sdhc_data *data, u8_t cmd, uint32_t payload,
u32_t *reply)
{
return sdhc_map_r1_status(
sdhc_cmd_r37_raw(data, cmd, payload, reply));
}
/* Receives a SDHC data block */
static int sdhc_rx_block(struct sdhc_data *data, u8_t *buf, int len)
{
int err;
int token;
int i;
/* Note the one extra byte to ensure there's an idle byte
* between commands.
*/
u8_t crc[SDHC_CRC16_SIZE + 1];
token = sdhc_skip(data, 0xFF);
if (token < 0) {
return token;
}
if (token != SDHC_TOKEN_SINGLE) {
/* No start token */
return -EIO;
}
/* Read the data in batches */
for (i = 0; i < len; i += sizeof(sdhc_ones)) {
int remain = MIN(sizeof(sdhc_ones), len - i);
struct spi_buf tx_bufs[] = {
{
.buf = (u8_t *)sdhc_ones,
.len = remain
}
};
const struct spi_buf_set tx = {
.buffers = tx_bufs,
.count = 1,
};
struct spi_buf rx_bufs[] = {
{
.buf = &buf[i],
.len = remain
}
};
const struct spi_buf_set rx = {
.buffers = rx_bufs,
.count = 1,
};
err = sdhc_trace(data, -1, spi_transceive(data->spi, &data->cfg,
&tx, &rx),
&buf[i], remain);
if (err != 0) {
return err;
}
}
err = sdhc_rx_bytes(data, crc, sizeof(crc));
if (err != 0) {
return err;
}
if (sys_get_be16(crc) != crc16_itu_t(0, buf, len)) {
/* Bad CRC */
return -EILSEQ;
}
return 0;
}
/* Transmits a SDHC data block */
static int sdhc_tx_block(struct sdhc_data *data, u8_t *send, int len)
{
u8_t buf[SDHC_CRC16_SIZE];
int err;
/* Start the block */
buf[0] = SDHC_TOKEN_SINGLE;
err = sdhc_tx(data, buf, 1);
if (err != 0) {
return err;
}
/* Write the payload */
err = sdhc_tx(data, send, len);
if (err != 0) {
return err;
}
/* Build and write the trailing CRC */
sys_put_be16(crc16_itu_t(0, send, len), buf);
err = sdhc_tx(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
return sdhc_map_data_status(sdhc_rx_u8(data));
}
static int sdhc_recover(struct sdhc_data *data)
{
/* TODO(nzmichaelh): implement */
return sdhc_cmd_r1(data, SDHC_SEND_STATUS, 0);
}
/* Attempts to return the card to idle mode */
static int sdhc_go_idle(struct sdhc_data *data)
{
sdhc_set_cs(data, 1);
/* Write the initial >= 74 clocks */
sdhc_tx(data, sdhc_ones, 10);
sdhc_set_cs(data, 0);
return sdhc_cmd_r1_idle(data, SDHC_GO_IDLE_STATE, 0);
}
/* Checks the supported host volatage and basic protocol */
static int sdhc_check_card(struct sdhc_data *data)
{
u32_t cond;
int err;
/* Check that the current voltage is supported */
err = sdhc_cmd_r7_idle(data, SDHC_SEND_IF_COND,
SDHC_VHS_3V3 | SDHC_CHECK, &cond);
if (err != 0) {
return err;
}
if ((cond & 0xFF) != SDHC_CHECK) {
/* Card returned a different check pattern */
return -ENOENT;
}
if ((cond & SDHC_VHS_MASK) != SDHC_VHS_3V3) {
/* Card doesn't support this voltage */
return -ENOTSUP;
}
return 0;
}
/* Detect and initialise the card */
static int sdhc_detect(struct sdhc_data *data)
{
int err;
u32_t ocr;
struct sdhc_retry retry;
u8_t structure;
u32_t csize;
u8_t buf[SDHC_CSD_SIZE];
data->cfg.frequency = SDHC_INITIAL_SPEED;
data->status = DISK_STATUS_UNINIT;
sdhc_retry_init(&retry, SDHC_INIT_TIMEOUT, SDHC_RETRY_DELAY);
/* Synchronise with the card by sending it to idle */
do {
err = sdhc_go_idle(data);
if (err == 0) {
err = sdhc_check_card(data);
if (err == 0) {
break;
}
}
if (!sdhc_retry_ok(&retry)) {
return -ENOENT;
}
} while (true);
/* Enable CRC mode */
err = sdhc_cmd_r1_idle(data, SDHC_CRC_ON_OFF, 1);
if (err != 0) {
return err;
}
/* Wait for the card to leave idle state */
do {
sdhc_cmd_r1_raw(data, SDHC_APP_CMD, 0);
err = sdhc_cmd_r1(data, SDHC_SEND_OP_COND, SDHC_HCS);
if (err == 0) {
break;
}
} while (sdhc_retry_ok(&retry));
if (err != 0) {
/* Card never exited idle */
return -ETIMEDOUT;
}
/* Read OCR and confirm this is a SDHC card */
err = sdhc_cmd_r3(data, SDHC_READ_OCR, 0, &ocr);
if (err != 0) {
return err;
}
if ((ocr & SDHC_CCS) == 0U) {
/* A 'SDSC' card */
return -ENOTSUP;
}
/* Read the CSD */
err = sdhc_cmd_r1(data, SDHC_SEND_CSD, 0);
if (err != 0) {
return err;
}
err = sdhc_rx_block(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
/* Bits 126..127 are the structure version */
structure = (buf[0] >> 6);
if (structure != SDHC_CSD_V2) {
/* Unsupported CSD format */
return -ENOTSUP;
}
/* Bits 48..69 are the capacity of the card in 512 KiB units, minus 1.
*/
csize = sys_get_be32(&buf[6]) & ((1 << 22) - 1);
if (csize < 4112) {
/* Invalid capacity according to section 5.3.3 */
return -ENOTSUP;
}
data->sector_count = (csize + 1) * (512 * 1024 / SDHC_SECTOR_SIZE);
LOG_INF("Found a ~%u MiB SDHC card.",
data->sector_count / (1024 * 1024 / SDHC_SECTOR_SIZE));
/* Read the CID */
err = sdhc_cmd_r1(data, SDHC_SEND_CID, 0);
if (err != 0) {
return err;
}
err = sdhc_rx_block(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
LOG_INF("Manufacturer ID=%d OEM='%c%c' Name='%c%c%c%c%c' "
"Revision=0x%x Serial=0x%x",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8], sys_get_be32(&buf[9]));
/* Initilisation complete */
data->cfg.frequency = SDHC_SPEED;
data->status = DISK_STATUS_OK;
return 0;
}
static int sdhc_read(struct sdhc_data *data, u8_t *buf, u32_t sector,
u32_t count)
{
int err;
err = sdhc_map_disk_status(data->status);
if (err != 0) {
return err;
}
sdhc_set_cs(data, 0);
/* Send the start read command */
err = sdhc_cmd_r1(data, SDHC_READ_MULTIPLE_BLOCK, sector);
if (err != 0) {
goto error;
}
/* Read the sectors */
for (; count != 0U; count--) {
err = sdhc_rx_block(data, buf, SDHC_SECTOR_SIZE);
if (err != 0) {
goto error;
}
buf += SDHC_SECTOR_SIZE;
}
/* Ignore the error as STOP_TRANSMISSION always returns 0x7F */
sdhc_cmd_r1(data, SDHC_STOP_TRANSMISSION, 0);
/* Wait until the card becomes ready */
err = sdhc_skip_until_ready(data);
error:
sdhc_set_cs(data, 1);
return err;
}
static int sdhc_write(struct sdhc_data *data, const u8_t *buf, u32_t sector,
u32_t count)
{
int err;
err = sdhc_map_disk_status(data->status);
if (err != 0) {
return err;
}
sdhc_set_cs(data, 0);
/* Write the blocks one-by-one */
for (; count != 0U; count--) {
err = sdhc_cmd_r1(data, SDHC_WRITE_BLOCK, sector);
if (err < 0) {
goto error;
}
err = sdhc_tx_block(data, (u8_t *)buf, SDHC_SECTOR_SIZE);
if (err != 0) {
goto error;
}
/* Wait for the card to finish programming */
err = sdhc_skip_until_ready(data);
if (err != 0) {
goto error;
}
err = sdhc_cmd_r2(data, SDHC_SEND_STATUS, 0);
if (err != 0) {
goto error;
}
buf += SDHC_SECTOR_SIZE;
sector++;
}
err = 0;
error:
sdhc_set_cs(data, 1);
return err;
}
static int disk_sdhc_init(struct device *dev);
static int sdhc_init(struct device *dev)
{
struct sdhc_data *data = dev->driver_data;
data->spi = device_get_binding(DT_ZEPHYR_MMC_SPI_SLOT_0_BUS_NAME);
data->cfg.frequency = SDHC_INITIAL_SPEED;
data->cfg.operation = SPI_WORD_SET(8) | SPI_HOLD_ON_CS;
data->cfg.slave = DT_ZEPHYR_MMC_SPI_SLOT_0_BASE_ADDRESS;
data->cs = device_get_binding(DT_ZEPHYR_MMC_SPI_SLOT_0_CS_GPIO_CONTROLLER);
__ASSERT_NO_MSG(data->cs != NULL);
data->pin = DT_ZEPHYR_MMC_SPI_SLOT_0_CS_GPIO_PIN;
disk_sdhc_init(dev);
return gpio_pin_configure(data->cs, data->pin, GPIO_DIR_OUT);
}
static struct device *sdhc_get_device(void) { return DEVICE_GET(sdhc_0); }
static int disk_sdhc_access_status(struct disk_info *disk)
{
struct device *dev = sdhc_get_device();
struct sdhc_data *data = dev->driver_data;
return data->status;
}
static int disk_sdhc_access_read(struct disk_info *disk, u8_t *buf,
u32_t sector, u32_t count)
{
struct device *dev = sdhc_get_device();
struct sdhc_data *data = dev->driver_data;
int err;
LOG_DBG("sector=%u count=%u", sector, count);
err = sdhc_read(data, buf, sector, count);
if (err != 0 && sdhc_is_retryable(err)) {
sdhc_recover(data);
err = sdhc_read(data, buf, sector, count);
}
return err;
}
static int disk_sdhc_access_write(struct disk_info *disk, const u8_t *buf,
u32_t sector, u32_t count)
{
struct device *dev = sdhc_get_device();
struct sdhc_data *data = dev->driver_data;
int err;
LOG_DBG("sector=%u count=%u", sector, count);
err = sdhc_write(data, buf, sector, count);
if (err != 0 && sdhc_is_retryable(err)) {
sdhc_recover(data);
err = sdhc_write(data, buf, sector, count);
}
return err;
}
static int disk_sdhc_access_ioctl(struct disk_info *disk, u8_t cmd, void *buf)
{
struct device *dev = sdhc_get_device();
struct sdhc_data *data = dev->driver_data;
int err;
err = sdhc_map_disk_status(data->status);
if (err != 0) {
return err;
}
switch (cmd) {
case DISK_IOCTL_CTRL_SYNC:
break;
case DISK_IOCTL_GET_SECTOR_COUNT:
*(u32_t *)buf = data->sector_count;
break;
case DISK_IOCTL_GET_SECTOR_SIZE:
*(u32_t *)buf = SDHC_SECTOR_SIZE;
break;
case DISK_IOCTL_GET_ERASE_BLOCK_SZ:
*(u32_t *)buf = SDHC_SECTOR_SIZE;
break;
default:
return -EINVAL;
}
return 0;
}
static int disk_sdhc_access_init(struct disk_info *disk)
{
struct device *dev = sdhc_get_device();
struct sdhc_data *data = dev->driver_data;
int err;
if (data->status == DISK_STATUS_OK) {
/* Called twice, don't re-init. */
return 0;
}
err = sdhc_detect(data);
sdhc_set_cs(data, 1);
return err;
}
static const struct disk_operations sdhc_disk_ops = {
.init = disk_sdhc_access_init,
.status = disk_sdhc_access_status,
.read = disk_sdhc_access_read,
.write = disk_sdhc_access_write,
.ioctl = disk_sdhc_access_ioctl,
};
static struct disk_info sdhc_disk = {
.name = CONFIG_DISK_SDHC_VOLUME_NAME,
.ops = &sdhc_disk_ops,
};
static int disk_sdhc_init(struct device *dev)
{
struct sdhc_data *data = dev->driver_data;
data->status = DISK_STATUS_UNINIT;
return disk_access_register(&sdhc_disk);
}
static struct sdhc_data sdhc_data_0;
DEVICE_AND_API_INIT(sdhc_0, "sdhc_0", sdhc_init, &sdhc_data_0, NULL,
APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, NULL);