blob: 6ce58a7972ab66d9b46cd6d6ab01c0ddb57246da [file] [log] [blame]
/* sensor_bmp280.c - Driver for Bosch BMP280 temperature and pressure sensor */
/*
* Copyright (c) 2016 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <nanokernel.h>
#include <i2c.h>
#include <sensor.h>
#include <init.h>
#include <gpio.h>
#include <misc/byteorder.h>
#include "sensor_bmp280.h"
#ifndef CONFIG_SENSOR_DEBUG
#define DBG(...) { ; }
#else
#include <misc/printk.h>
#define DBG printk
#endif /* CONFIG_SENSOR_DEBUG */
static int bmp280_burst_read(struct bmp280_data *data, uint8_t addr,
uint8_t *vals, uint8_t len)
{
struct i2c_msg msgs[2] = {
{
.buf = &addr,
.len = 1,
.flags = I2C_MSG_WRITE | I2C_MSG_RESTART,
},
{
.buf = vals,
.len = len,
.flags = I2C_MSG_READ | I2C_MSG_STOP,
},
};
return i2c_transfer(data->i2c_master, msgs, 2, data->i2c_slave_addr);
}
static int bmp280_reg_read(struct bmp280_data *data, uint8_t reg, uint8_t *val)
{
return bmp280_burst_read(data, reg, val, 1);
}
static int bmp280_reg_write(struct bmp280_data *data, uint8_t reg, uint8_t val)
{
uint8_t buf[2] = {reg, val};
return i2c_write(data->i2c_master, buf, 2, data->i2c_slave_addr);
}
/*
* Compensation code taken from BMP280 datasheet, Section 3.11.3
* "Compensation formula".
*/
static void bmp280_compensate_temp(struct bmp280_data *data, int32_t adc_temp)
{
int32_t var1, var2;
var1 = (((adc_temp >> 3) - ((int32_t)data->dig_t1 << 1)) *
((int32_t)data->dig_t2)) >> 11;
var2 = (((((adc_temp >> 4) - ((int32_t)data->dig_t1)) *
((adc_temp >> 4) - ((int32_t)data->dig_t1))) >> 12) *
((int32_t)data->dig_t3)) >> 14;
data->t_fine = var1 + var2;
data->comp_temp = (data->t_fine * 5 + 128) >> 8;
}
static void bmp280_compensate_press(struct bmp280_data *data, int32_t adc_press)
{
int64_t var1, var2, p;
var1 = ((int64_t)data->t_fine) - 128000;
var2 = var1 * var1 * (int64_t)data->dig_p6;
var2 = var2 + ((var1 * (int64_t)data->dig_p5) << 17);
var2 = var2 + (((int64_t)data->dig_p4) << 35);
var1 = ((var1 * var1 * (int64_t)data->dig_p3) >> 8) +
((var1 * (int64_t)data->dig_p2) << 12);
var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)data->dig_p1) >> 33;
/* Avoid exception caused by division by zero. */
if (var1 == 0) {
data->comp_press = 0;
return;
}
p = 1048576 - adc_press;
p = (((p << 31) - var2) * 3125) / var1;
var1 = (((int64_t)data->dig_p9) * (p >> 13) * (p >> 13)) >> 25;
var2 = (((int64_t)data->dig_p8) * p) >> 19;
p = ((p + var1 + var2) >> 8) + (((int64_t)data->dig_p7) << 4);
data->comp_press = (uint32_t)p;
}
static int bmp280_sample_fetch(struct device *dev)
{
struct bmp280_data *data = dev->driver_data;
uint8_t buf[6];
int32_t adc_press, adc_temp;
int ret;
ret = bmp280_burst_read(data, BMP280_REG_PRESS_MSB, buf, sizeof(buf));
if (ret) {
return ret;
}
adc_press = (buf[0] << 12) | (buf[1] << 4) | (buf[2] >> 4);
adc_temp = (buf[3] << 12) | (buf[4] << 4) | (buf[5] >> 4);
bmp280_compensate_temp(data, adc_temp);
bmp280_compensate_press(data, adc_press);
return 0;
}
static int bmp280_channel_get(struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct bmp280_data *data = dev->driver_data;
switch (chan) {
case SENSOR_CHAN_TEMP:
/*
* data->comp_temp has a resolution of 0.01 degC. So
* 5123 equals 51.23 degC.
*/
val->type = SENSOR_TYPE_INT_PLUS_MICRO;
val->val1 = data->comp_temp / 100;
val->val2 = data->comp_temp % 100 * 10000;
break;
case SENSOR_CHAN_PRESS:
/*
* data->comp_press has 24 integer bits and 8
* fractional. Output value of 24674867 represents
* 24674867/256 = 96386.2 Pa = 963.862 hPa
*/
val->type = SENSOR_TYPE_INT_PLUS_MICRO;
val->val1 = (data->comp_press >> 8) / 1000;
val->val2 = (data->comp_press >> 8) % 1000 * 1000 +
(((data->comp_press & 0xff) * 1000) >> 8);
break;
default:
return -EINVAL;
}
return 0;
}
static struct sensor_driver_api bmp280_api_funcs = {
.sample_fetch = bmp280_sample_fetch,
.channel_get = bmp280_channel_get,
};
static void bmp280_read_compensation(struct bmp280_data *data)
{
uint16_t buf[12];
bmp280_burst_read(data, BMP280_REG_COMP_START,
(uint8_t *)buf, sizeof(buf));
data->dig_t1 = sys_le16_to_cpu(buf[0]);
data->dig_t2 = sys_le16_to_cpu(buf[1]);
data->dig_t3 = sys_le16_to_cpu(buf[2]);
data->dig_p1 = sys_le16_to_cpu(buf[3]);
data->dig_p2 = sys_le16_to_cpu(buf[4]);
data->dig_p3 = sys_le16_to_cpu(buf[5]);
data->dig_p4 = sys_le16_to_cpu(buf[6]);
data->dig_p5 = sys_le16_to_cpu(buf[7]);
data->dig_p6 = sys_le16_to_cpu(buf[8]);
data->dig_p7 = sys_le16_to_cpu(buf[9]);
data->dig_p8 = sys_le16_to_cpu(buf[10]);
data->dig_p9 = sys_le16_to_cpu(buf[11]);
}
static int bmp280_chip_init(struct device *dev)
{
struct bmp280_data *data = (struct bmp280_data *) dev->driver_data;
uint8_t buf;
bmp280_reg_read(data, BMP280_REG_ID, &buf);
if (buf != BMP280_CHIP_ID) {
DBG("bmp280: bad chip id %x\n", buf);
return -ENOTSUP;
}
bmp280_read_compensation(data);
bmp280_reg_write(data, BMP280_REG_CTRL_MEAS, BMP280_CTRL_MEAS_VAL);
bmp280_reg_write(data, BMP280_REG_CONFIG, BMP280_CONFIG_VAL);
return 0;
}
int bmp280_init(struct device *dev)
{
struct bmp280_data *data = dev->driver_data;
int ret;
dev->driver_api = &bmp280_api_funcs;
data->i2c_master = device_get_binding(CONFIG_BMP280_I2C_MASTER_DEV_NAME);
if (!data->i2c_master) {
DBG("bmp280: i2c master not found: %s\n",
CONFIG_BMP280_I2C_MASTER_DEV_NAME);
return -EINVAL;
}
data->i2c_slave_addr = CONFIG_BMP280_I2C_ADDR;
ret = bmp280_chip_init(dev);
if (ret) {
return ret;
}
return 0;
}
static struct bmp280_data bmp280_data;
DEVICE_INIT(bmp280, CONFIG_BMP280_DEV_NAME, bmp280_init, &bmp280_data,
NULL, SECONDARY, CONFIG_BMP280_INIT_PRIORITY);