blob: fd3e7b6104ef06c9d65e52abb1bb5d00b701c9f3 [file] [log] [blame]
/*
* Copyright (c) 2016 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <device.h>
#include <gpio.h>
#include <misc/util.h>
#include <nanokernel.h>
#include <sensor.h>
#include "sensor_sht3xd.h"
extern struct sht3xd_data sht3xd_driver;
static uint16_t sht3xd_temp_processed_to_raw(const struct sensor_value *val)
{
uint32_t val2;
uint64_t uval;
if (val->type == SENSOR_TYPE_INT) {
val2 = 0;
} else {
val2 = val->val2;
}
/* ret = (val + 45) * (2^16 - 1) / 175 */
uval = (uint64_t)(val->val1 + 45) * 1000000 + val2;
return ((uval * 0xFFFF) / 175) / 1000000;
}
static int sht3xd_rh_processed_to_raw(const struct sensor_value *val)
{
uint32_t val2;
uint64_t uval;
if (val->type == SENSOR_TYPE_INT) {
val2 = 0;
} else {
val2 = val->val2;
}
/* ret = val * (2^16 -1) / 100000 */
uval = (uint64_t)val->val1 * 1000000 + val2;
return ((uval * 0xFFFF) / 100000) / 1000000;
}
int sht3xd_attr_set(struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
struct sht3xd_data *drv_data = dev->driver_data;
uint16_t set_cmd, clear_cmd, reg_val, temp, rh;
if (val->type != SENSOR_TYPE_INT &&
val->type != SENSOR_TYPE_INT_PLUS_MICRO) {
return -ENOTSUP;
}
if (attr == SENSOR_ATTR_LOWER_THRESH) {
if (chan == SENSOR_CHAN_TEMP) {
drv_data->t_low = sht3xd_temp_processed_to_raw(val);
} else if (chan == SENSOR_CHAN_HUMIDITY) {
drv_data->rh_low = sht3xd_rh_processed_to_raw(val);
} else {
return -ENOTSUP;
}
set_cmd = SHT3XD_CMD_WRITE_TH_LOW_SET;
clear_cmd = SHT3XD_CMD_WRITE_TH_LOW_CLEAR;
temp = drv_data->t_low;
rh = drv_data->rh_low;
} else if (attr == SENSOR_ATTR_UPPER_THRESH) {
if (chan == SENSOR_CHAN_TEMP) {
drv_data->t_high = sht3xd_temp_processed_to_raw(val);
} else if (chan == SENSOR_CHAN_HUMIDITY) {
drv_data->rh_high = sht3xd_rh_processed_to_raw(val);
} else {
return -ENOTSUP;
}
set_cmd = SHT3XD_CMD_WRITE_TH_HIGH_SET;
clear_cmd = SHT3XD_CMD_WRITE_TH_HIGH_CLEAR;
temp = drv_data->t_high;
rh = drv_data->rh_high;
} else {
return -ENOTSUP;
}
reg_val = (rh & 0xFE00) | ((temp & 0xFF80) >> 7);
if (sht3xd_write_reg(drv_data, set_cmd, reg_val) != 0 ||
sht3xd_write_reg(drv_data, clear_cmd, reg_val) != 0) {
DBG("Failed to write threshold value!\n");
return -EIO;
}
return 0;
}
static void sht3xd_gpio_callback(struct device *dev, uint32_t pin)
{
gpio_pin_disable_callback(dev, pin);
#if defined(CONFIG_SHT3XD_TRIGGER_OWN_FIBER)
nano_sem_give(&sht3xd_driver.gpio_sem);
#elif defined(CONFIG_SHT3XD_TRIGGER_GLOBAL_FIBER)
nano_isr_fifo_put(sensor_get_work_fifo(), &sht3xd_driver.work);
#endif
}
static void sht3xd_fiber_cb(void *arg)
{
struct device *dev = arg;
struct sht3xd_data *drv_data = dev->driver_data;
if (drv_data->handler != NULL) {
drv_data->handler(dev, &drv_data->trigger);
}
gpio_pin_enable_callback(drv_data->gpio, CONFIG_SHT3XD_GPIO_PIN_NUM);
}
#ifdef CONFIG_SHT3XD_TRIGGER_OWN_FIBER
static void sht3xd_fiber(int dev_ptr, int unused)
{
struct device *dev = INT_TO_POINTER(dev_ptr);
struct sht3xd_data *drv_data = dev->driver_data;
ARG_UNUSED(unused);
while (1) {
nano_fiber_sem_take(&drv_data->gpio_sem, TICKS_UNLIMITED);
sht3xd_fiber_cb(dev);
}
}
#endif
int sht3xd_trigger_set(struct device *dev,
const struct sensor_trigger *trig,
sensor_trigger_handler_t handler)
{
struct sht3xd_data *drv_data = dev->driver_data;
if (trig->type != SENSOR_TRIG_THRESHOLD) {
return -ENOTSUP;
}
gpio_pin_disable_callback(drv_data->gpio, CONFIG_SHT3XD_GPIO_PIN_NUM);
drv_data->handler = handler;
drv_data->trigger = *trig;
gpio_pin_enable_callback(drv_data->gpio, CONFIG_SHT3XD_GPIO_PIN_NUM);
return 0;
}
int sht3xd_init_interrupt(struct device *dev)
{
struct sht3xd_data *drv_data = dev->driver_data;
int rc;
drv_data->t_low = 0;
drv_data->rh_low = 0;
drv_data->t_high = 0xFFFF;
drv_data->rh_high = 0xFFFF;
/* set alert thresholds to match reamsurement ranges */
rc = sht3xd_write_reg(drv_data, SHT3XD_CMD_WRITE_TH_HIGH_SET, 0xFFFF);
if (rc != 0) {
DBG("Failed to write threshold high set value!\n");
return -EIO;
}
rc = sht3xd_write_reg(drv_data, SHT3XD_CMD_WRITE_TH_HIGH_CLEAR,
0xFFFF);
if (rc != 0) {
DBG("Failed to write threshold high clear value!\n");
return -EIO;
}
rc = sht3xd_write_reg(drv_data, SHT3XD_CMD_WRITE_TH_LOW_SET, 0);
if (rc != 0) {
DBG("Failed to write threshold low set value!\n");
return -EIO;
}
rc = sht3xd_write_reg(drv_data, SHT3XD_CMD_WRITE_TH_LOW_SET, 0);
if (rc != 0) {
DBG("Failed to write threshold low clear value!\n");
return -EIO;
}
/* setup gpio interrupt */
drv_data->gpio = device_get_binding(CONFIG_SHT3XD_GPIO_DEV_NAME);
if (drv_data->gpio == NULL) {
DBG("Failed to get pointer to %s device!\n",
CONFIG_SHT3XD_GPIO_DEV_NAME);
return -EINVAL;
}
gpio_pin_configure(drv_data->gpio, CONFIG_SHT3XD_GPIO_PIN_NUM,
GPIO_DIR_IN | GPIO_INT | GPIO_INT_LEVEL |
GPIO_INT_ACTIVE_HIGH | GPIO_INT_DEBOUNCE);
rc = gpio_set_callback(drv_data->gpio, sht3xd_gpio_callback);
if (rc != 0) {
DBG("Failed to set gpio callback!\n");
return -EIO;
}
#if defined(CONFIG_SHT3XD_TRIGGER_OWN_FIBER)
nano_sem_init(&drv_data->gpio_sem);
fiber_start(drv_data->fiber_stack, CONFIG_SHT3XD_FIBER_STACK_SIZE,
(nano_fiber_entry_t)sht3xd_fiber, POINTER_TO_INT(dev),
0, CONFIG_SHT3XD_FIBER_PRIORITY, 0);
#elif defined(CONFIG_SHT3XD_TRIGGER_GLOBAL_FIBER)
drv_data->work.handler = sht3xd_fiber_cb;
drv_data->work.arg = dev;
#endif
return 0;
}