Laurentiu Mihalcea | bd9b3c6 | 2024-02-08 17:25:52 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2024 NXP |
| 3 | * |
| 4 | * SPDX-License-Identifier: Apache-2.0 |
| 5 | */ |
| 6 | |
| 7 | #ifndef ZEPHYR_DRIVERS_DAI_NXP_ESAI_H_ |
| 8 | #define ZEPHYR_DRIVERS_DAI_NXP_ESAI_H_ |
| 9 | |
| 10 | #include <zephyr/logging/log.h> |
| 11 | #include <zephyr/drivers/dai.h> |
| 12 | #include <zephyr/device.h> |
| 13 | #include <zephyr/dt-bindings/dai/esai.h> |
| 14 | |
| 15 | #include <fsl_esai.h> |
| 16 | |
| 17 | LOG_MODULE_REGISTER(nxp_dai_esai); |
| 18 | |
| 19 | /* used for binding the driver */ |
| 20 | #define DT_DRV_COMPAT nxp_dai_esai |
| 21 | |
| 22 | /* workaround the fact that device_map() doesn't exist for SoCs with no MMU */ |
| 23 | #ifndef DEVICE_MMIO_IS_IN_RAM |
| 24 | #define device_map(virt, phys, size, flags) *(virt) = (phys) |
| 25 | #endif /* DEVICE_MMIO_IS_IN_RAM */ |
| 26 | |
| 27 | /* macros used for parsing DTS data */ |
| 28 | |
| 29 | #define _ESAI_FIFO_DEPTH(inst)\ |
| 30 | FSL_FEATURE_ESAI_FIFO_SIZEn(UINT_TO_ESAI(DT_INST_REG_ADDR(inst))) |
| 31 | |
| 32 | /* used to fetch the depth of the FIFO. If the "fifo-depth" property is |
| 33 | * not specified, the FIFO depth that will be reported to the upper layers |
| 34 | * will be 128 * 4 (which is the maximum value, or, well, the actual FIFO |
| 35 | * depth) |
| 36 | */ |
| 37 | #define ESAI_FIFO_DEPTH(inst)\ |
| 38 | DT_INST_PROP_OR(inst, fifo_depth, _ESAI_FIFO_DEPTH(inst)) |
| 39 | |
| 40 | /* used to fetch the TX FIFO watermark value. If the "tx-fifo-watermark" |
| 41 | * property is not specified, this will be set to half of the FIFO depth. |
| 42 | */ |
| 43 | #define ESAI_TX_FIFO_WATERMARK(inst)\ |
| 44 | DT_INST_PROP_OR(inst, tx_fifo_watermark, (_ESAI_FIFO_DEPTH(inst) / 2)) |
| 45 | |
| 46 | /* used to fetch the RX FIFO watermark value. If the "rx-fifo-watermark" |
| 47 | * property is not specified, this will be set to half of the FIFO depth. |
| 48 | */ |
| 49 | #define ESAI_RX_FIFO_WATERMARK(inst)\ |
| 50 | DT_INST_PROP_OR(inst, rx_fifo_watermark, (_ESAI_FIFO_DEPTH(inst) / 2)) |
| 51 | |
| 52 | /* use to fetch the handshake value for a given direction. The handshake |
| 53 | * is computed as follows: |
| 54 | * handshake = CHANNEL_ID | (MUX_VALUE << 8) |
| 55 | * The channel ID and MUX value are each encoded in 8 bits. |
| 56 | */ |
| 57 | #define ESAI_TX_RX_DMA_HANDSHAKE(inst, dir)\ |
| 58 | ((DT_INST_DMAS_CELL_BY_NAME(inst, dir, channel) & GENMASK(7, 0)) |\ |
| 59 | ((DT_INST_DMAS_CELL_BY_NAME(inst, dir, mux) << 8) & GENMASK(15, 8))) |
| 60 | |
| 61 | /* used to fetch the word width. If the "word-width" property is not specified, |
| 62 | * this will default to 24. |
| 63 | */ |
| 64 | #define ESAI_WORD_WIDTH(inst) DT_INST_PROP_OR(inst, word_width, 24) |
| 65 | |
| 66 | /* utility macros */ |
| 67 | |
| 68 | /* convert uint to ESAI_Type * */ |
| 69 | #define UINT_TO_ESAI(x) ((ESAI_Type *)(uintptr_t)(x)) |
| 70 | |
| 71 | /* invert a clock's polarity. This works because a clock's polarity |
| 72 | * is expressed as a 0 or as a 1. |
| 73 | */ |
| 74 | #define ESAI_INVERT_POLARITY(polarity) (polarity) = !(polarity) |
| 75 | |
| 76 | #define _ESAI_SLOT_WORD_WIDTH_IS_VALID(width) (!(((width) - 8) % 4)) |
| 77 | |
| 78 | /* used to check if a slot/word width combination is valid */ |
| 79 | #define ESAI_SLOT_WORD_WIDTH_IS_VALID(slot_width, word_width)\ |
| 80 | (_ESAI_SLOT_WORD_WIDTH_IS_VALID(slot_width) && \ |
| 81 | _ESAI_SLOT_WORD_WIDTH_IS_VALID(word_width) && \ |
| 82 | ((word_width) < 32) && ((word_width) <= (slot_width))) |
| 83 | |
| 84 | /* used to convert slot/word width combination to a value that can be written |
| 85 | * to TCR's TSWS or RCR's RSWS. |
| 86 | */ |
| 87 | #define ESAI_SLOT_FORMAT(s, w)\ |
| 88 | ((w) < 24 ? ((s) - (w) + (((w) - 8) / 4)) : ((s) < 32 ? 0x1e : 0x1f)) |
| 89 | |
| 90 | /* used to compute the word alignment based on the word width value. |
| 91 | * This returns a value that can be written to TFCR's TWA or RFCR's |
| 92 | * RWA. |
| 93 | */ |
| 94 | #define ESAI_WORD_ALIGNMENT(word_width) ((32 - (word_width)) / 4) |
| 95 | |
| 96 | #define _ESAI_RX_FIFO_USAGE_EN(mask)\ |
| 97 | (((mask) << ESAI_RFCR_RE0_SHIFT) &\ |
| 98 | (ESAI_RFCR_RE0_MASK | ESAI_RFCR_RE1_MASK |\ |
| 99 | ESAI_RFCR_RE2_MASK | ESAI_RFCR_RE3_MASK)) |
| 100 | |
| 101 | #define _ESAI_TX_FIFO_USAGE_EN(mask)\ |
| 102 | (((mask) << ESAI_TFCR_TE0_SHIFT) &\ |
| 103 | (ESAI_TFCR_TE0_MASK | ESAI_TFCR_TE1_MASK | ESAI_TFCR_TE2_MASK |\ |
| 104 | ESAI_TFCR_TE3_MASK | ESAI_TFCR_TE4_MASK | ESAI_TFCR_TE5_MASK)) |
| 105 | |
| 106 | /* used to fetch the mask for setting TX/RX FIFO usage. By FIFO usage |
| 107 | * we mean we allow receivers/transmitters to use the "global" TX/RX |
| 108 | * FIFO (i.e: the FIFO that's common to all transmitters/receivers). |
| 109 | * More specifically, this macro returns the mask required for setting |
| 110 | * TFCR's TEx fields or RFCR's REx fields. |
| 111 | */ |
| 112 | #define ESAI_TX_RX_FIFO_USAGE_EN(dir, mask)\ |
| 113 | ((dir) == DAI_DIR_TX ? _ESAI_TX_FIFO_USAGE_EN(mask) :\ |
| 114 | _ESAI_RX_FIFO_USAGE_EN(mask)) |
| 115 | |
| 116 | #define _ESAI_TX_EN(mask)\ |
| 117 | (((mask) << ESAI_TCR_TE0_SHIFT) &\ |
| 118 | (ESAI_TCR_TE0_MASK | ESAI_TCR_TE1_MASK | ESAI_TCR_TE2_MASK |\ |
| 119 | ESAI_TCR_TE3_MASK | ESAI_TCR_TE4_MASK | ESAI_TCR_TE5_MASK)) |
| 120 | |
| 121 | #define _ESAI_RX_EN(mask)\ |
| 122 | (((mask) << ESAI_RCR_RE0_SHIFT) &\ |
| 123 | (ESAI_RCR_RE0_MASK | ESAI_RCR_RE1_MASK | ESAI_RCR_RE2_MASK |\ |
| 124 | ESAI_RCR_RE3_MASK)) |
| 125 | |
| 126 | /* used to fetch the mask for enabling transmitters/receivers. |
| 127 | * More specifically, this refers to TCR's TEx bits or RCR's REx |
| 128 | * bits. |
| 129 | */ |
| 130 | #define ESAI_TX_RX_EN(dir, mask)\ |
| 131 | ((dir) == DAI_DIR_TX ? _ESAI_TX_EN(mask) : _ESAI_RX_EN(mask)) |
| 132 | |
| 133 | /* used to fetch the base address of the TX FIFO */ |
| 134 | #define ESAI_TX_FIFO_BASE(inst)\ |
| 135 | POINTER_TO_UINT(&(UINT_TO_ESAI(DT_INST_REG_ADDR(inst))->ETDR)) |
| 136 | |
| 137 | /* used to fetch the base address of the RX FIFO */ |
| 138 | #define ESAI_RX_FIFO_BASE(inst)\ |
| 139 | POINTER_TO_UINT(&(UINT_TO_ESAI(DT_INST_REG_ADDR(inst))->ERDR)) |
| 140 | |
| 141 | /* used to check if an ESAI pin is used. An ESAI pin is considered to |
| 142 | * be used if PDC and PC bits for that pin are set (i.e: pin is in ESAI |
| 143 | * mode). |
| 144 | * |
| 145 | * The ESAI pins support 4 functionalities which can be configured |
| 146 | * via PCRC and PRRC: |
| 147 | * 1) Disconnected |
| 148 | * 2) GPIO input |
| 149 | * 3) GPIO output |
| 150 | * 4) ESAI |
| 151 | */ |
| 152 | #define ESAI_PIN_IS_USED(data, which)\ |
| 153 | (((data)->pcrc & BIT(which)) && ((data->prrc) & BIT(which))) |
| 154 | |
| 155 | struct esai_data { |
| 156 | mm_reg_t regmap; |
| 157 | struct dai_config cfg; |
| 158 | /* transmitter state */ |
| 159 | enum dai_state tx_state; |
| 160 | /* receiver state */ |
| 161 | enum dai_state rx_state; |
| 162 | /* value to be committed to PRRC. This is computed |
| 163 | * during esai_init() and committed during config_set() |
| 164 | * stage. |
| 165 | */ |
| 166 | uint32_t prrc; |
| 167 | /* value to be committed to PCRC. Computed and committed |
| 168 | * during the same stages as PRRC. |
| 169 | */ |
| 170 | uint32_t pcrc; |
| 171 | }; |
| 172 | |
| 173 | struct esai_config { |
| 174 | uint32_t regmap_phys; |
| 175 | uint32_t regmap_size; |
| 176 | const struct dai_properties *tx_props; |
| 177 | const struct dai_properties *rx_props; |
| 178 | uint32_t rx_fifo_watermark; |
| 179 | uint32_t tx_fifo_watermark; |
| 180 | uint32_t word_width; |
| 181 | uint32_t *pinmodes; |
| 182 | uint32_t pinmodes_size; |
| 183 | uint32_t *clock_cfg; |
| 184 | uint32_t clock_cfg_size; |
| 185 | }; |
| 186 | |
| 187 | /* this needs to perfectly match SOF's struct sof_ipc_dai_esai_params */ |
| 188 | struct esai_bespoke_config { |
| 189 | uint32_t reserved0; |
| 190 | |
| 191 | uint16_t reserved1; |
| 192 | uint16_t mclk_id; |
| 193 | uint32_t mclk_direction; |
| 194 | |
| 195 | /* clock-related data */ |
| 196 | uint32_t mclk_rate; |
| 197 | uint32_t fsync_rate; |
| 198 | uint32_t bclk_rate; |
| 199 | |
| 200 | /* TDM-related data */ |
| 201 | uint32_t tdm_slots; |
| 202 | uint32_t rx_slots; |
| 203 | uint32_t tx_slots; |
| 204 | uint16_t tdm_slot_width; |
| 205 | |
| 206 | uint16_t reserved2; |
| 207 | }; |
| 208 | |
| 209 | struct esai_transceiver_config { |
| 210 | /* enable/disable the HCLK prescaler */ |
| 211 | bool hclk_prescaler_en; |
| 212 | /* controls the divison value of HCLK (i.e: TPM0-TPM7) */ |
| 213 | uint32_t hclk_div_ratio; |
| 214 | /* controls the division value of HCLK before reaching |
| 215 | * BCLK consumers (i.e: TFP0-TFP3) |
| 216 | */ |
| 217 | uint32_t bclk_div_ratio; |
| 218 | /* should the HCLK divison be bypassed or not? |
| 219 | * If in bypass, HCLK pad will be the same as EXTAL |
| 220 | */ |
| 221 | bool hclk_bypass; |
| 222 | |
| 223 | /* HCLK direction - input or output */ |
| 224 | esai_clock_direction_t hclk_dir; |
| 225 | /* HCLK source - EXTAL or IPG clock */ |
| 226 | esai_hclk_source_t hclk_src; |
| 227 | /* HCLK polarity - LOW or HIGH */ |
| 228 | esai_clock_polarity_t hclk_polarity; |
| 229 | |
| 230 | /* BCLK direction - input or output */ |
| 231 | esai_clock_direction_t bclk_dir; |
| 232 | /* BCLK polarity - LOW or HIGH */ |
| 233 | esai_clock_polarity_t bclk_polarity; |
| 234 | |
| 235 | /* FSYNC direction - input or output */ |
| 236 | esai_clock_direction_t fsync_dir; |
| 237 | /* FSYNC polarity - LOW or HIGH */ |
| 238 | esai_clock_polarity_t fsync_polarity; |
| 239 | |
| 240 | /* should FSYNC be bit-wide or word-wide? */ |
| 241 | bool fsync_is_bit_wide; |
| 242 | /* enable/disable padding word with zeros. If |
| 243 | * disabled, pad will be done using last/first |
| 244 | * bit - see TCR's PADC bit for more info. |
| 245 | */ |
| 246 | bool zero_pad_en; |
| 247 | /* should FSYNC be asserted before MSB transmission |
| 248 | * or alongside it? |
| 249 | */ |
| 250 | bool fsync_early; |
| 251 | |
| 252 | /* FSYNC divison value - for network mode this is |
| 253 | * the same as the number of slots - 1. |
| 254 | */ |
| 255 | uint32_t fsync_div; |
| 256 | |
| 257 | /* slot format - see TCR's TSWS or RCR's RSWS */ |
| 258 | esai_slot_format_t slot_format; |
| 259 | /* mode - network or normal |
| 260 | * TODO: at the moment, only network mode is supported. |
| 261 | */ |
| 262 | esai_mode_t mode; |
| 263 | |
| 264 | /* controls whether MSB or LSB is transmitted first */ |
| 265 | esai_shift_direction_t data_order; |
| 266 | |
| 267 | /* controls the word alignment inside a slot. If enabled |
| 268 | * word is left-aligned, otherwise it will be right-aligned. |
| 269 | * For details, see TCR/RCR's TWA/RWA. |
| 270 | */ |
| 271 | bool data_left_aligned; |
| 272 | /* TX/RX watermark value */ |
| 273 | uint32_t watermark; |
| 274 | |
| 275 | /* concatenation of TSMA+TSMB/RSMA+RSMB. Controls which |
| 276 | * slots should be High-Z or data. |
| 277 | */ |
| 278 | uint32_t slot_mask; |
| 279 | /* controls the alignment of data written to FIFO. |
| 280 | * See TFCR's TWA or RFCR's RWA for more details. |
| 281 | */ |
| 282 | uint32_t word_alignment; |
| 283 | }; |
| 284 | |
| 285 | static int esai_parse_clock_config(const struct esai_config *cfg, |
| 286 | struct esai_transceiver_config *tx_cfg, |
| 287 | struct esai_transceiver_config *rx_cfg) |
| 288 | { |
| 289 | int i; |
| 290 | uint32_t crt_clock, crt_dir; |
| 291 | |
| 292 | for (i = 0; i < cfg->clock_cfg_size; i += 2) { |
| 293 | crt_clock = cfg->clock_cfg[i]; |
| 294 | crt_dir = cfg->clock_cfg[i + 1]; |
| 295 | |
| 296 | /* sanity checks */ |
| 297 | if (crt_clock > ESAI_CLOCK_FST) { |
| 298 | LOG_ERR("invalid clock configuration ID: %d", crt_clock); |
| 299 | return -EINVAL; |
| 300 | } |
| 301 | |
| 302 | if (crt_dir > ESAI_CLOCK_OUTPUT) { |
| 303 | LOG_ERR("invalid clock configuration direction: %d", crt_dir); |
| 304 | return -EINVAL; |
| 305 | } |
| 306 | |
| 307 | switch (crt_clock) { |
| 308 | case ESAI_CLOCK_HCKT: |
| 309 | tx_cfg->hclk_dir = crt_dir; |
| 310 | break; |
| 311 | case ESAI_CLOCK_HCKR: |
| 312 | rx_cfg->hclk_dir = crt_dir; |
| 313 | break; |
| 314 | case ESAI_CLOCK_SCKT: |
| 315 | tx_cfg->bclk_dir = crt_dir; |
| 316 | break; |
| 317 | case ESAI_CLOCK_SCKR: |
| 318 | rx_cfg->bclk_dir = crt_dir; |
| 319 | break; |
| 320 | case ESAI_CLOCK_FST: |
| 321 | tx_cfg->fsync_dir = crt_dir; |
| 322 | break; |
| 323 | case ESAI_CLOCK_FSR: |
| 324 | rx_cfg->fsync_dir = crt_dir; |
| 325 | break; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | return 0; |
| 330 | } |
| 331 | |
| 332 | static int esai_parse_pinmodes(const struct esai_config *cfg, |
| 333 | struct esai_data *data) |
| 334 | { |
| 335 | int i; |
| 336 | uint32_t pin, pin_mode; |
| 337 | |
| 338 | /* initially, the assumption is that all pins are in ESAI mode */ |
| 339 | data->pcrc = ESAI_PCRC_PC_MASK; |
| 340 | data->prrc = ESAI_PRRC_PDC_MASK; |
| 341 | |
| 342 | for (i = 0; i < cfg->pinmodes_size; i += 2) { |
| 343 | pin = cfg->pinmodes[i]; |
| 344 | pin_mode = cfg->pinmodes[i + 1]; |
| 345 | |
| 346 | if (pin > ESAI_PIN_SDO0 || pin_mode > ESAI_PIN_ESAI) { |
| 347 | return -EINVAL; |
| 348 | } |
| 349 | |
| 350 | switch (pin_mode) { |
| 351 | case ESAI_PIN_DISCONNECTED: |
| 352 | data->pcrc &= ~BIT(pin); |
| 353 | data->prrc &= ~BIT(pin); |
| 354 | break; |
| 355 | case ESAI_PIN_GPIO_INPUT: |
| 356 | data->pcrc &= ~BIT(pin); |
| 357 | break; |
| 358 | case ESAI_PIN_GPIO_OUTPUT: |
| 359 | data->prrc &= ~BIT(pin); |
| 360 | break; |
| 361 | case ESAI_PIN_ESAI: |
| 362 | /* nothing to be done here, this is the default */ |
| 363 | break; |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | return 0; |
| 368 | } |
| 369 | |
| 370 | static inline uint32_t esai_get_state(struct esai_data *data, |
| 371 | enum dai_dir dir) |
| 372 | { |
| 373 | if (dir == DAI_DIR_RX) { |
| 374 | return data->rx_state; |
| 375 | } else { |
| 376 | return data->tx_state; |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | static inline int esai_update_state(struct esai_data *data, |
| 381 | enum dai_dir dir, enum dai_state new_state) |
| 382 | { |
| 383 | enum dai_state old_state = esai_get_state(data, dir); |
| 384 | |
| 385 | LOG_DBG("attempting state transition from %d to %d", old_state, new_state); |
| 386 | |
| 387 | switch (new_state) { |
| 388 | case DAI_STATE_NOT_READY: |
| 389 | /* initial state, transition is not possible */ |
| 390 | return -EPERM; |
| 391 | case DAI_STATE_READY: |
| 392 | if (old_state != DAI_STATE_NOT_READY && |
| 393 | old_state != DAI_STATE_READY && |
| 394 | old_state != DAI_STATE_STOPPING) { |
| 395 | return -EPERM; |
| 396 | } |
| 397 | break; |
| 398 | case DAI_STATE_RUNNING: |
| 399 | if (old_state != DAI_STATE_STOPPING && |
| 400 | old_state != DAI_STATE_READY) { |
| 401 | return -EPERM; |
| 402 | } |
| 403 | break; |
| 404 | case DAI_STATE_STOPPING: |
| 405 | if (old_state != DAI_STATE_RUNNING) { |
| 406 | return -EPERM; |
| 407 | } |
| 408 | break; |
| 409 | default: |
| 410 | LOG_ERR("invalid new state: %d", new_state); |
| 411 | return -EINVAL; |
| 412 | } |
| 413 | |
| 414 | if (dir == DAI_DIR_RX) { |
| 415 | data->rx_state = new_state; |
| 416 | } else { |
| 417 | data->tx_state = new_state; |
| 418 | } |
| 419 | |
| 420 | return 0; |
| 421 | } |
| 422 | |
| 423 | static inline void esai_tx_rx_enable_disable_fifo(ESAI_Type *base, |
| 424 | enum dai_dir dir, |
| 425 | bool enable) |
| 426 | { |
| 427 | if (enable) { |
| 428 | if (dir == DAI_DIR_RX) { |
| 429 | base->RFCR |= ESAI_RFCR_RFE_MASK; |
| 430 | } else { |
| 431 | base->TFCR |= ESAI_TFCR_TFE_MASK; |
| 432 | } |
| 433 | } else { |
| 434 | if (dir == DAI_DIR_RX) { |
| 435 | base->RFCR &= ~ESAI_RFCR_RFE_MASK; |
| 436 | } else { |
| 437 | base->TFCR &= ~ESAI_TFCR_TFE_MASK; |
| 438 | } |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | static inline void esai_tx_rx_enable_disable(ESAI_Type *base, |
| 443 | enum dai_dir dir, |
| 444 | uint32_t which, bool enable) |
| 445 | { |
| 446 | uint32_t val = ESAI_TX_RX_EN(dir, which); |
| 447 | |
| 448 | if (enable) { |
| 449 | if (dir == DAI_DIR_RX) { |
| 450 | base->RCR |= val; |
| 451 | } else { |
| 452 | base->TCR |= val; |
| 453 | } |
| 454 | } else { |
| 455 | if (dir == DAI_DIR_RX) { |
| 456 | base->RCR &= ~val; |
| 457 | } else { |
| 458 | base->TCR &= ~val; |
| 459 | } |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | static inline void esai_tx_rx_enable_disable_fifo_usage(ESAI_Type *base, |
| 464 | enum dai_dir dir, |
| 465 | uint32_t which, bool enable) |
| 466 | { |
| 467 | uint32_t val = ESAI_TX_RX_FIFO_USAGE_EN(dir, which); |
| 468 | |
| 469 | if (enable) { |
| 470 | if (dir == DAI_DIR_RX) { |
| 471 | base->RFCR |= val; |
| 472 | } else { |
| 473 | base->TFCR |= val; |
| 474 | } |
| 475 | } else { |
| 476 | if (dir == DAI_DIR_RX) { |
| 477 | base->RFCR &= ~val; |
| 478 | } else { |
| 479 | base->TFCR &= ~val; |
| 480 | } |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | static inline void esai_dump_xceiver_config(struct esai_transceiver_config *cfg) |
| 485 | { |
| 486 | LOG_DBG("HCLK prescaler enable: %d", cfg->hclk_prescaler_en); |
| 487 | LOG_DBG("HCLK divider ratio: %d", cfg->hclk_div_ratio); |
| 488 | LOG_DBG("BCLK divider ratio: %d", cfg->bclk_div_ratio); |
| 489 | LOG_DBG("HCLK bypass: %d", cfg->hclk_bypass); |
| 490 | |
| 491 | LOG_DBG("HCLK direction: %d", cfg->hclk_dir); |
| 492 | LOG_DBG("HCLK source: %d", cfg->hclk_src); |
| 493 | LOG_DBG("HCLK polarity: %d", cfg->hclk_polarity); |
| 494 | |
| 495 | LOG_DBG("BCLK direction: %d", cfg->bclk_dir); |
| 496 | LOG_DBG("BCLK polarity: %d", cfg->bclk_polarity); |
| 497 | |
| 498 | LOG_DBG("FSYNC direction: %d", cfg->fsync_dir); |
| 499 | LOG_DBG("FSYNC polarity: %d", cfg->fsync_polarity); |
| 500 | |
| 501 | LOG_DBG("FSYNC is bit wide: %d", cfg->fsync_is_bit_wide); |
| 502 | LOG_DBG("zero pad enable: %d", cfg->zero_pad_en); |
| 503 | LOG_DBG("FSYNC asserted early: %d", cfg->fsync_early); |
| 504 | |
| 505 | LOG_DBG("watermark: %d", cfg->watermark); |
| 506 | LOG_DBG("slot mask: 0x%x", cfg->slot_mask); |
| 507 | LOG_DBG("word alignment: 0x%x", cfg->word_alignment); |
| 508 | } |
| 509 | |
| 510 | static inline void esai_dump_register_data(ESAI_Type *base) |
| 511 | { |
| 512 | LOG_DBG("ECR: 0x%x", base->ECR); |
| 513 | LOG_DBG("ESR: 0x%x", base->ESR); |
| 514 | LOG_DBG("TFCR: 0x%x", base->TFCR); |
| 515 | LOG_DBG("TFSR: 0x%x", base->TFSR); |
| 516 | LOG_DBG("RFCR: 0x%x", base->RFCR); |
| 517 | LOG_DBG("RFSR: 0x%x", base->RFSR); |
| 518 | LOG_DBG("TSR: 0x%x", base->TSR); |
| 519 | LOG_DBG("SAISR: 0x%x", base->SAISR); |
| 520 | LOG_DBG("SAICR: 0x%x", base->SAICR); |
| 521 | LOG_DBG("TCR: 0x%x", base->TCR); |
| 522 | LOG_DBG("TCCR: 0x%x", base->TCCR); |
| 523 | LOG_DBG("RCR: 0x%x", base->RCR); |
| 524 | LOG_DBG("RCCR: 0x%x", base->RCCR); |
| 525 | LOG_DBG("TSMA: 0x%x", base->TSMA); |
| 526 | LOG_DBG("TSMB: 0x%x", base->TSMB); |
| 527 | LOG_DBG("RSMA: 0x%x", base->RSMA); |
| 528 | LOG_DBG("RSMB: 0x%x", base->RSMB); |
| 529 | LOG_DBG("PRRC: 0x%x", base->PRRC); |
| 530 | LOG_DBG("PCRC: 0x%x", base->PCRC); |
| 531 | } |
| 532 | |
| 533 | #endif /* ZEPHYR_DRIVERS_DAI_NXP_ESAI_H_ */ |