blob: 69728a403d91fc23e8f090a51245dc541051bd8b [file] [log] [blame]
/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Kernel thread support
*
* This module provides general purpose thread support.
*/
#include <zephyr/kernel.h>
#include <zephyr/spinlock.h>
#include <zephyr/sys/math_extras.h>
#include <zephyr/sys_clock.h>
#include <ksched.h>
#include <kthread.h>
#include <wait_q.h>
#include <zephyr/internal/syscall_handler.h>
#include <kernel_internal.h>
#include <kswap.h>
#include <zephyr/init.h>
#include <zephyr/tracing/tracing.h>
#include <string.h>
#include <stdbool.h>
#include <zephyr/sys/check.h>
#include <zephyr/random/random.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/logging/log.h>
#include <zephyr/llext/symbol.h>
#include <zephyr/sys/iterable_sections.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
#ifdef CONFIG_OBJ_CORE_THREAD
static struct k_obj_type obj_type_thread;
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
static struct k_obj_core_stats_desc thread_stats_desc = {
.raw_size = sizeof(struct k_cycle_stats),
.query_size = sizeof(struct k_thread_runtime_stats),
.raw = z_thread_stats_raw,
.query = z_thread_stats_query,
.reset = z_thread_stats_reset,
.disable = z_thread_stats_disable,
.enable = z_thread_stats_enable,
};
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */
static int init_thread_obj_core_list(void)
{
/* Initialize mem_slab object type */
#ifdef CONFIG_OBJ_CORE_THREAD
z_obj_type_init(&obj_type_thread, K_OBJ_TYPE_THREAD_ID,
offsetof(struct k_thread, obj_core));
#endif /* CONFIG_OBJ_CORE_THREAD */
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
k_obj_type_stats_init(&obj_type_thread, &thread_stats_desc);
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */
return 0;
}
SYS_INIT(init_thread_obj_core_list, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
#endif /* CONFIG_OBJ_CORE_THREAD */
#define _FOREACH_STATIC_THREAD(thread_data) \
STRUCT_SECTION_FOREACH(_static_thread_data, thread_data)
bool k_is_in_isr(void)
{
return arch_is_in_isr();
}
EXPORT_SYMBOL(k_is_in_isr);
#ifdef CONFIG_THREAD_CUSTOM_DATA
void z_impl_k_thread_custom_data_set(void *value)
{
_current->custom_data = value;
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_custom_data_set(void *data)
{
z_impl_k_thread_custom_data_set(data);
}
#include <zephyr/syscalls/k_thread_custom_data_set_mrsh.c>
#endif /* CONFIG_USERSPACE */
void *z_impl_k_thread_custom_data_get(void)
{
return _current->custom_data;
}
#ifdef CONFIG_USERSPACE
static inline void *z_vrfy_k_thread_custom_data_get(void)
{
return z_impl_k_thread_custom_data_get();
}
#include <zephyr/syscalls/k_thread_custom_data_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_THREAD_CUSTOM_DATA */
int z_impl_k_is_preempt_thread(void)
{
return !arch_is_in_isr() && thread_is_preemptible(_current);
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_is_preempt_thread(void)
{
return z_impl_k_is_preempt_thread();
}
#include <zephyr/syscalls/k_is_preempt_thread_mrsh.c>
#endif /* CONFIG_USERSPACE */
int z_impl_k_thread_priority_get(k_tid_t thread)
{
return thread->base.prio;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_thread_priority_get(k_tid_t thread)
{
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
return z_impl_k_thread_priority_get(thread);
}
#include <zephyr/syscalls/k_thread_priority_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
int z_impl_k_thread_name_set(k_tid_t thread, const char *str)
{
#ifdef CONFIG_THREAD_NAME
if (thread == NULL) {
thread = _current;
}
strncpy(thread->name, str, CONFIG_THREAD_MAX_NAME_LEN - 1);
thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
#ifdef CONFIG_ARCH_HAS_THREAD_NAME_HOOK
arch_thread_name_set(thread, str);
#endif /* CONFIG_ARCH_HAS_THREAD_NAME_HOOK */
SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, 0);
return 0;
#else
ARG_UNUSED(thread);
ARG_UNUSED(str);
SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, -ENOSYS);
return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_thread_name_set(k_tid_t thread, const char *str)
{
#ifdef CONFIG_THREAD_NAME
char name[CONFIG_THREAD_MAX_NAME_LEN];
if (thread != NULL) {
if (K_SYSCALL_OBJ(thread, K_OBJ_THREAD) != 0) {
return -EINVAL;
}
}
/* In theory we could copy directly into thread->name, but
* the current z_vrfy / z_impl split does not provide a
* means of doing so.
*/
if (k_usermode_string_copy(name, str, sizeof(name)) != 0) {
return -EFAULT;
}
return z_impl_k_thread_name_set(thread, name);
#else
return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
#include <zephyr/syscalls/k_thread_name_set_mrsh.c>
#endif /* CONFIG_USERSPACE */
const char *k_thread_name_get(k_tid_t thread)
{
#ifdef CONFIG_THREAD_NAME
return (const char *)thread->name;
#else
ARG_UNUSED(thread);
return NULL;
#endif /* CONFIG_THREAD_NAME */
}
int z_impl_k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
{
#ifdef CONFIG_THREAD_NAME
strncpy(buf, thread->name, size);
return 0;
#else
ARG_UNUSED(thread);
ARG_UNUSED(buf);
ARG_UNUSED(size);
return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
static size_t copy_bytes(char *dest, size_t dest_size, const char *src, size_t src_size)
{
size_t bytes_to_copy;
bytes_to_copy = MIN(dest_size, src_size);
memcpy(dest, src, bytes_to_copy);
return bytes_to_copy;
}
const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
{
size_t off = 0;
uint8_t bit;
uint8_t thread_state = thread_id->base.thread_state;
static const struct {
const char *str;
size_t len;
} state_string[] = {
{ Z_STATE_STR_DUMMY, sizeof(Z_STATE_STR_DUMMY) - 1},
{ Z_STATE_STR_PENDING, sizeof(Z_STATE_STR_PENDING) - 1},
{ Z_STATE_STR_PRESTART, sizeof(Z_STATE_STR_PRESTART) - 1},
{ Z_STATE_STR_DEAD, sizeof(Z_STATE_STR_DEAD) - 1},
{ Z_STATE_STR_SUSPENDED, sizeof(Z_STATE_STR_SUSPENDED) - 1},
{ Z_STATE_STR_ABORTING, sizeof(Z_STATE_STR_ABORTING) - 1},
{ Z_STATE_STR_SUSPENDING, sizeof(Z_STATE_STR_SUSPENDING) - 1},
{ Z_STATE_STR_QUEUED, sizeof(Z_STATE_STR_QUEUED) - 1},
};
if ((buf == NULL) || (buf_size == 0)) {
return "";
}
buf_size--; /* Reserve 1 byte for end-of-string character */
/*
* Loop through each bit in the thread_state. Stop once all have
* been processed. If more than one thread_state bit is set, then
* separate the descriptive strings with a '+'.
*/
for (unsigned int index = 0; thread_state != 0; index++) {
bit = BIT(index);
if ((thread_state & bit) == 0) {
continue;
}
off += copy_bytes(buf + off, buf_size - off,
state_string[index].str,
state_string[index].len);
thread_state &= ~bit;
if (thread_state != 0) {
off += copy_bytes(buf + off, buf_size - off, "+", 1);
}
}
buf[off] = '\0';
return (const char *)buf;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_thread_name_copy(k_tid_t thread,
char *buf, size_t size)
{
#ifdef CONFIG_THREAD_NAME
size_t len;
struct k_object *ko = k_object_find(thread);
/* Special case: we allow reading the names of initialized threads
* even if we don't have permission on them
*/
if ((thread == NULL) || (ko->type != K_OBJ_THREAD) ||
((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0)) {
return -EINVAL;
}
if (K_SYSCALL_MEMORY_WRITE(buf, size) != 0) {
return -EFAULT;
}
len = strlen(thread->name);
if ((len + 1) > size) {
return -ENOSPC;
}
return k_usermode_to_copy((void *)buf, thread->name, len + 1);
#else
ARG_UNUSED(thread);
ARG_UNUSED(buf);
ARG_UNUSED(size);
return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
#include <zephyr/syscalls/k_thread_name_copy_mrsh.c>
#endif /* CONFIG_USERSPACE */
#ifdef CONFIG_STACK_SENTINEL
/* Check that the stack sentinel is still present
*
* The stack sentinel feature writes a magic value to the lowest 4 bytes of
* the thread's stack when the thread is initialized. This value gets checked
* in a few places:
*
* 1) In k_yield() if the current thread is not swapped out
* 2) After servicing a non-nested interrupt
* 3) In z_swap(), check the sentinel in the outgoing thread
*
* Item 2 requires support in arch/ code.
*
* If the check fails, the thread will be terminated appropriately through
* the system fatal error handler.
*/
void z_check_stack_sentinel(void)
{
uint32_t *stack;
if ((_current->base.thread_state & _THREAD_DUMMY) != 0) {
return;
}
stack = (uint32_t *)_current->stack_info.start;
if (*stack != STACK_SENTINEL) {
/* Restore it so further checks don't trigger this same error */
*stack = STACK_SENTINEL;
z_except_reason(K_ERR_STACK_CHK_FAIL);
}
}
#endif /* CONFIG_STACK_SENTINEL */
void z_impl_k_thread_start(k_tid_t thread)
{
SYS_PORT_TRACING_OBJ_FUNC(k_thread, start, thread);
z_sched_start(thread);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_start(k_tid_t thread)
{
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
z_impl_k_thread_start(thread);
}
#include <zephyr/syscalls/k_thread_start_mrsh.c>
#endif /* CONFIG_USERSPACE */
#if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
int z_stack_adjust_initialized;
static size_t random_offset(size_t stack_size)
{
size_t random_val;
if (!z_stack_adjust_initialized) {
z_early_rand_get((uint8_t *)&random_val, sizeof(random_val));
} else {
sys_rand_get((uint8_t *)&random_val, sizeof(random_val));
}
/* Don't need to worry about alignment of the size here,
* arch_new_thread() is required to do it.
*
* FIXME: Not the best way to get a random number in a range.
* See #6493
*/
const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM;
if (unlikely(fuzz * 2 > stack_size)) {
return 0;
}
return fuzz;
}
#if defined(CONFIG_STACK_GROWS_UP)
/* This is so rare not bothering for now */
#error "Stack pointer randomization not implemented for upward growing stacks"
#endif /* CONFIG_STACK_GROWS_UP */
#endif /* CONFIG_STACK_POINTER_RANDOM */
static char *setup_thread_stack(struct k_thread *new_thread,
k_thread_stack_t *stack, size_t stack_size)
{
size_t stack_obj_size, stack_buf_size;
char *stack_ptr, *stack_buf_start;
size_t delta = 0;
#ifdef CONFIG_USERSPACE
if (z_stack_is_user_capable(stack)) {
stack_obj_size = K_THREAD_STACK_LEN(stack_size);
stack_buf_start = K_THREAD_STACK_BUFFER(stack);
stack_buf_size = stack_obj_size - K_THREAD_STACK_RESERVED;
} else
#endif /* CONFIG_USERSPACE */
{
/* Object cannot host a user mode thread */
stack_obj_size = K_KERNEL_STACK_LEN(stack_size);
stack_buf_start = K_KERNEL_STACK_BUFFER(stack);
stack_buf_size = stack_obj_size - K_KERNEL_STACK_RESERVED;
/* Zephyr treats stack overflow as an app bug. But
* this particular overflow can be seen by static
* analysis so needs to be handled somehow.
*/
if (K_KERNEL_STACK_RESERVED > stack_obj_size) {
k_panic();
}
}
#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
/* Map the stack into virtual memory and use that as the base to
* calculate the initial stack pointer at the high end of the stack
* object. The stack pointer may be reduced later in this function
* by TLS or random offset.
*
* K_MEM_MAP_UNINIT is used to mimic the behavior of non-mapped
* stack. If CONFIG_INIT_STACKS is enabled, the stack will be
* cleared below.
*/
void *stack_mapped = k_mem_map_phys_guard((uintptr_t)stack, stack_obj_size,
K_MEM_PERM_RW | K_MEM_CACHE_WB | K_MEM_MAP_UNINIT,
false);
__ASSERT_NO_MSG((uintptr_t)stack_mapped != 0);
#ifdef CONFIG_USERSPACE
if (z_stack_is_user_capable(stack)) {
stack_buf_start = K_THREAD_STACK_BUFFER(stack_mapped);
} else
#endif /* CONFIG_USERSPACE */
{
stack_buf_start = K_KERNEL_STACK_BUFFER(stack_mapped);
}
stack_ptr = (char *)stack_mapped + stack_obj_size;
/* Need to store the info on mapped stack so we can remove the mappings
* when the thread ends.
*/
new_thread->stack_info.mapped.addr = stack_mapped;
new_thread->stack_info.mapped.sz = stack_obj_size;
#else /* CONFIG_THREAD_STACK_MEM_MAPPED */
/* Initial stack pointer at the high end of the stack object, may
* be reduced later in this function by TLS or random offset
*/
stack_ptr = (char *)stack + stack_obj_size;
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
LOG_DBG("stack %p for thread %p: obj_size=%zu buf_start=%p "
" buf_size %zu stack_ptr=%p",
stack, new_thread, stack_obj_size, (void *)stack_buf_start,
stack_buf_size, (void *)stack_ptr);
#ifdef CONFIG_INIT_STACKS
memset(stack_buf_start, 0xaa, stack_buf_size);
#endif /* CONFIG_INIT_STACKS */
#ifdef CONFIG_STACK_SENTINEL
/* Put the stack sentinel at the lowest 4 bytes of the stack area.
* We periodically check that it's still present and kill the thread
* if it isn't.
*/
*((uint32_t *)stack_buf_start) = STACK_SENTINEL;
#endif /* CONFIG_STACK_SENTINEL */
#ifdef CONFIG_THREAD_LOCAL_STORAGE
/* TLS is always last within the stack buffer */
delta += arch_tls_stack_setup(new_thread, stack_ptr);
#endif /* CONFIG_THREAD_LOCAL_STORAGE */
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
size_t tls_size = sizeof(struct _thread_userspace_local_data);
/* reserve space on highest memory of stack buffer for local data */
delta += tls_size;
new_thread->userspace_local_data =
(struct _thread_userspace_local_data *)(stack_ptr - delta);
#endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */
#if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
delta += random_offset(stack_buf_size);
#endif /* CONFIG_STACK_POINTER_RANDOM */
delta = ROUND_UP(delta, ARCH_STACK_PTR_ALIGN);
#ifdef CONFIG_THREAD_STACK_INFO
/* Initial values. Arches which implement MPU guards that "borrow"
* memory from the stack buffer (not tracked in K_THREAD_STACK_RESERVED)
* will need to appropriately update this.
*
* The bounds tracked here correspond to the area of the stack object
* that the thread can access, which includes TLS.
*/
new_thread->stack_info.start = (uintptr_t)stack_buf_start;
new_thread->stack_info.size = stack_buf_size;
new_thread->stack_info.delta = delta;
#endif /* CONFIG_THREAD_STACK_INFO */
stack_ptr -= delta;
return stack_ptr;
}
/*
* The provided stack_size value is presumed to be either the result of
* K_THREAD_STACK_SIZEOF(stack), or the size value passed to the instance
* of K_THREAD_STACK_DEFINE() which defined 'stack'.
*/
char *z_setup_new_thread(struct k_thread *new_thread,
k_thread_stack_t *stack, size_t stack_size,
k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, uint32_t options, const char *name)
{
char *stack_ptr;
Z_ASSERT_VALID_PRIO(prio, entry);
#ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP
k_thread_abort_cleanup_check_reuse(new_thread);
#endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */
#ifdef CONFIG_OBJ_CORE_THREAD
k_obj_core_init_and_link(K_OBJ_CORE(new_thread), &obj_type_thread);
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
k_obj_core_stats_register(K_OBJ_CORE(new_thread),
&new_thread->base.usage,
sizeof(new_thread->base.usage));
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */
#endif /* CONFIG_OBJ_CORE_THREAD */
#ifdef CONFIG_USERSPACE
__ASSERT((options & K_USER) == 0U || z_stack_is_user_capable(stack),
"user thread %p with kernel-only stack %p",
new_thread, stack);
k_object_init(new_thread);
k_object_init(stack);
new_thread->stack_obj = stack;
new_thread->syscall_frame = NULL;
/* Any given thread has access to itself */
k_object_access_grant(new_thread, new_thread);
#endif /* CONFIG_USERSPACE */
z_waitq_init(&new_thread->join_queue);
/* Initialize various struct k_thread members */
z_init_thread_base(&new_thread->base, prio, _THREAD_PRESTART, options);
stack_ptr = setup_thread_stack(new_thread, stack, stack_size);
#ifdef CONFIG_KERNEL_COHERENCE
/* Check that the thread object is safe, but that the stack is
* still cached!
*/
__ASSERT_NO_MSG(arch_mem_coherent(new_thread));
/* When dynamic thread stack is available, the stack may come from
* uncached area.
*/
#ifndef CONFIG_DYNAMIC_THREAD
__ASSERT_NO_MSG(!arch_mem_coherent(stack));
#endif /* CONFIG_DYNAMIC_THREAD */
#endif /* CONFIG_KERNEL_COHERENCE */
arch_new_thread(new_thread, stack, stack_ptr, entry, p1, p2, p3);
/* static threads overwrite it afterwards with real value */
new_thread->init_data = NULL;
#ifdef CONFIG_USE_SWITCH
/* switch_handle must be non-null except when inside z_swap()
* for synchronization reasons. Historically some notional
* USE_SWITCH architectures have actually ignored the field
*/
__ASSERT(new_thread->switch_handle != NULL,
"arch layer failed to initialize switch_handle");
#endif /* CONFIG_USE_SWITCH */
#ifdef CONFIG_THREAD_CUSTOM_DATA
/* Initialize custom data field (value is opaque to kernel) */
new_thread->custom_data = NULL;
#endif /* CONFIG_THREAD_CUSTOM_DATA */
#ifdef CONFIG_EVENTS
new_thread->no_wake_on_timeout = false;
#endif /* CONFIG_EVENTS */
#ifdef CONFIG_THREAD_MONITOR
new_thread->entry.pEntry = entry;
new_thread->entry.parameter1 = p1;
new_thread->entry.parameter2 = p2;
new_thread->entry.parameter3 = p3;
k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock);
new_thread->next_thread = _kernel.threads;
_kernel.threads = new_thread;
k_spin_unlock(&z_thread_monitor_lock, key);
#endif /* CONFIG_THREAD_MONITOR */
#ifdef CONFIG_THREAD_NAME
if (name != NULL) {
strncpy(new_thread->name, name,
CONFIG_THREAD_MAX_NAME_LEN - 1);
/* Ensure NULL termination, truncate if longer */
new_thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
#ifdef CONFIG_ARCH_HAS_THREAD_NAME_HOOK
arch_thread_name_set(new_thread, name);
#endif /* CONFIG_ARCH_HAS_THREAD_NAME_HOOK */
} else {
new_thread->name[0] = '\0';
}
#endif /* CONFIG_THREAD_NAME */
#ifdef CONFIG_SCHED_CPU_MASK
if (IS_ENABLED(CONFIG_SCHED_CPU_MASK_PIN_ONLY)) {
new_thread->base.cpu_mask = 1; /* must specify only one cpu */
} else {
new_thread->base.cpu_mask = -1; /* allow all cpus */
}
#endif /* CONFIG_SCHED_CPU_MASK */
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
/* _current may be null if the dummy thread is not used */
if (!_current) {
new_thread->resource_pool = NULL;
return stack_ptr;
}
#endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */
#ifdef CONFIG_USERSPACE
z_mem_domain_init_thread(new_thread);
if ((options & K_INHERIT_PERMS) != 0U) {
k_thread_perms_inherit(_current, new_thread);
}
#endif /* CONFIG_USERSPACE */
#ifdef CONFIG_SCHED_DEADLINE
new_thread->base.prio_deadline = 0;
#endif /* CONFIG_SCHED_DEADLINE */
new_thread->resource_pool = _current->resource_pool;
#ifdef CONFIG_SMP
z_waitq_init(&new_thread->halt_queue);
#endif /* CONFIG_SMP */
#ifdef CONFIG_SCHED_THREAD_USAGE
new_thread->base.usage = (struct k_cycle_stats) {};
new_thread->base.usage.track_usage =
CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE;
#endif /* CONFIG_SCHED_THREAD_USAGE */
SYS_PORT_TRACING_OBJ_FUNC(k_thread, create, new_thread);
return stack_ptr;
}
k_tid_t z_impl_k_thread_create(struct k_thread *new_thread,
k_thread_stack_t *stack,
size_t stack_size, k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, uint32_t options, k_timeout_t delay)
{
__ASSERT(!arch_is_in_isr(), "Threads may not be created in ISRs");
z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
prio, options, NULL);
if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
thread_schedule_new(new_thread, delay);
}
return new_thread;
}
#ifdef CONFIG_USERSPACE
bool z_stack_is_user_capable(k_thread_stack_t *stack)
{
return k_object_find(stack) != NULL;
}
k_tid_t z_vrfy_k_thread_create(struct k_thread *new_thread,
k_thread_stack_t *stack,
size_t stack_size, k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, uint32_t options, k_timeout_t delay)
{
size_t total_size, stack_obj_size;
struct k_object *stack_object;
/* The thread and stack objects *must* be in an uninitialized state */
K_OOPS(K_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD));
/* No need to check z_stack_is_user_capable(), it won't be in the
* object table if it isn't
*/
stack_object = k_object_find(stack);
K_OOPS(K_SYSCALL_VERIFY_MSG(k_object_validation_check(stack_object, stack,
K_OBJ_THREAD_STACK_ELEMENT,
_OBJ_INIT_FALSE) == 0,
"bad stack object"));
/* Verify that the stack size passed in is OK by computing the total
* size and comparing it with the size value in the object metadata
*/
K_OOPS(K_SYSCALL_VERIFY_MSG(!size_add_overflow(K_THREAD_STACK_RESERVED,
stack_size, &total_size),
"stack size overflow (%zu+%zu)",
stack_size,
K_THREAD_STACK_RESERVED));
/* Testing less-than-or-equal since additional room may have been
* allocated for alignment constraints
*/
#ifdef CONFIG_GEN_PRIV_STACKS
stack_obj_size = stack_object->data.stack_data->size;
#else
stack_obj_size = stack_object->data.stack_size;
#endif /* CONFIG_GEN_PRIV_STACKS */
K_OOPS(K_SYSCALL_VERIFY_MSG(total_size <= stack_obj_size,
"stack size %zu is too big, max is %zu",
total_size, stack_obj_size));
/* User threads may only create other user threads and they can't
* be marked as essential
*/
K_OOPS(K_SYSCALL_VERIFY(options & K_USER));
K_OOPS(K_SYSCALL_VERIFY(!(options & K_ESSENTIAL)));
/* Check validity of prio argument; must be the same or worse priority
* than the caller
*/
K_OOPS(K_SYSCALL_VERIFY(_is_valid_prio(prio, NULL)));
K_OOPS(K_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio,
_current->base.prio)));
z_setup_new_thread(new_thread, stack, stack_size,
entry, p1, p2, p3, prio, options, NULL);
if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
thread_schedule_new(new_thread, delay);
}
return new_thread;
}
#include <zephyr/syscalls/k_thread_create_mrsh.c>
#endif /* CONFIG_USERSPACE */
void z_init_thread_base(struct _thread_base *thread_base, int priority,
uint32_t initial_state, unsigned int options)
{
/* k_q_node is initialized upon first insertion in a list */
thread_base->pended_on = NULL;
thread_base->user_options = (uint8_t)options;
thread_base->thread_state = (uint8_t)initial_state;
thread_base->prio = priority;
thread_base->sched_locked = 0U;
#ifdef CONFIG_SMP
thread_base->is_idle = 0;
#endif /* CONFIG_SMP */
#ifdef CONFIG_TIMESLICE_PER_THREAD
thread_base->slice_ticks = 0;
thread_base->slice_expired = NULL;
#endif /* CONFIG_TIMESLICE_PER_THREAD */
/* swap_data does not need to be initialized */
z_init_thread_timeout(thread_base);
}
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
void *p1, void *p2, void *p3)
{
SYS_PORT_TRACING_FUNC(k_thread, user_mode_enter);
_current->base.user_options |= K_USER;
z_thread_essential_clear(_current);
#ifdef CONFIG_THREAD_MONITOR
_current->entry.pEntry = entry;
_current->entry.parameter1 = p1;
_current->entry.parameter2 = p2;
_current->entry.parameter3 = p3;
#endif /* CONFIG_THREAD_MONITOR */
#ifdef CONFIG_USERSPACE
__ASSERT(z_stack_is_user_capable(_current->stack_obj),
"dropping to user mode with kernel-only stack object");
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
memset(_current->userspace_local_data, 0,
sizeof(struct _thread_userspace_local_data));
#endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */
#ifdef CONFIG_THREAD_LOCAL_STORAGE
arch_tls_stack_setup(_current,
(char *)(_current->stack_info.start +
_current->stack_info.size));
#endif /* CONFIG_THREAD_LOCAL_STORAGE */
arch_user_mode_enter(entry, p1, p2, p3);
#else
/* XXX In this case we do not reset the stack */
z_thread_entry(entry, p1, p2, p3);
#endif /* CONFIG_USERSPACE */
}
#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
#ifdef CONFIG_STACK_GROWS_UP
#error "Unsupported configuration for stack analysis"
#endif /* CONFIG_STACK_GROWS_UP */
int z_stack_space_get(const uint8_t *stack_start, size_t size, size_t *unused_ptr)
{
size_t unused = 0;
const uint8_t *checked_stack = stack_start;
/* Take the address of any local variable as a shallow bound for the
* stack pointer. Addresses above it are guaranteed to be
* accessible.
*/
const uint8_t *stack_pointer = (const uint8_t *)&stack_start;
/* If we are currently running on the stack being analyzed, some
* memory management hardware will generate an exception if we
* read unused stack memory.
*
* This never happens when invoked from user mode, as user mode
* will always run this function on the privilege elevation stack.
*/
if ((stack_pointer > stack_start) && (stack_pointer <= (stack_start + size)) &&
IS_ENABLED(CONFIG_NO_UNUSED_STACK_INSPECTION)) {
/* TODO: We could add an arch_ API call to temporarily
* disable the stack checking in the CPU, but this would
* need to be properly managed wrt context switches/interrupts
*/
return -ENOTSUP;
}
if (IS_ENABLED(CONFIG_STACK_SENTINEL)) {
/* First 4 bytes of the stack buffer reserved for the
* sentinel value, it won't be 0xAAAAAAAA for thread
* stacks.
*
* FIXME: thread->stack_info.start ought to reflect
* this!
*/
checked_stack += 4;
size -= 4;
}
for (size_t i = 0; i < size; i++) {
if ((checked_stack[i]) == 0xaaU) {
unused++;
} else {
break;
}
}
*unused_ptr = unused;
return 0;
}
int z_impl_k_thread_stack_space_get(const struct k_thread *thread,
size_t *unused_ptr)
{
#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
if (thread->stack_info.mapped.addr == NULL) {
return -EINVAL;
}
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
return z_stack_space_get((const uint8_t *)thread->stack_info.start,
thread->stack_info.size, unused_ptr);
}
#ifdef CONFIG_USERSPACE
int z_vrfy_k_thread_stack_space_get(const struct k_thread *thread,
size_t *unused_ptr)
{
size_t unused;
int ret;
ret = K_SYSCALL_OBJ(thread, K_OBJ_THREAD);
CHECKIF(ret != 0) {
return ret;
}
ret = z_impl_k_thread_stack_space_get(thread, &unused);
CHECKIF(ret != 0) {
return ret;
}
ret = k_usermode_to_copy(unused_ptr, &unused, sizeof(size_t));
CHECKIF(ret != 0) {
return ret;
}
return 0;
}
#include <zephyr/syscalls/k_thread_stack_space_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_INIT_STACKS && CONFIG_THREAD_STACK_INFO */
#ifdef CONFIG_USERSPACE
static inline k_ticks_t z_vrfy_k_thread_timeout_remaining_ticks(
const struct k_thread *thread)
{
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
return z_impl_k_thread_timeout_remaining_ticks(thread);
}
#include <zephyr/syscalls/k_thread_timeout_remaining_ticks_mrsh.c>
static inline k_ticks_t z_vrfy_k_thread_timeout_expires_ticks(
const struct k_thread *thread)
{
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
return z_impl_k_thread_timeout_expires_ticks(thread);
}
#include <zephyr/syscalls/k_thread_timeout_expires_ticks_mrsh.c>
#endif /* CONFIG_USERSPACE */
#ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING
void z_thread_mark_switched_in(void)
{
#if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH)
z_sched_usage_start(_current);
#endif /* CONFIG_SCHED_THREAD_USAGE && !CONFIG_USE_SWITCH */
#ifdef CONFIG_TRACING
SYS_PORT_TRACING_FUNC(k_thread, switched_in);
#endif /* CONFIG_TRACING */
}
void z_thread_mark_switched_out(void)
{
#if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH)
z_sched_usage_stop();
#endif /*CONFIG_SCHED_THREAD_USAGE && !CONFIG_USE_SWITCH */
#ifdef CONFIG_TRACING
#ifdef CONFIG_THREAD_LOCAL_STORAGE
/* Dummy thread won't have TLS set up to run arbitrary code */
if (!_current_cpu->current ||
(_current_cpu->current->base.thread_state & _THREAD_DUMMY) != 0)
return;
#endif /* CONFIG_THREAD_LOCAL_STORAGE */
SYS_PORT_TRACING_FUNC(k_thread, switched_out);
#endif /* CONFIG_TRACING */
}
#endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */
int k_thread_runtime_stats_get(k_tid_t thread,
k_thread_runtime_stats_t *stats)
{
if ((thread == NULL) || (stats == NULL)) {
return -EINVAL;
}
#ifdef CONFIG_SCHED_THREAD_USAGE
z_sched_thread_usage(thread, stats);
#else
*stats = (k_thread_runtime_stats_t) {};
#endif /* CONFIG_SCHED_THREAD_USAGE */
return 0;
}
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
{
#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
k_thread_runtime_stats_t tmp_stats;
#endif /* CONFIG_SCHED_THREAD_USAGE_ALL */
if (stats == NULL) {
return -EINVAL;
}
*stats = (k_thread_runtime_stats_t) {};
#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
/* Retrieve the usage stats for each core and amalgamate them. */
unsigned int num_cpus = arch_num_cpus();
for (uint8_t i = 0; i < num_cpus; i++) {
z_sched_cpu_usage(i, &tmp_stats);
stats->execution_cycles += tmp_stats.execution_cycles;
stats->total_cycles += tmp_stats.total_cycles;
#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
stats->current_cycles += tmp_stats.current_cycles;
stats->peak_cycles += tmp_stats.peak_cycles;
stats->average_cycles += tmp_stats.average_cycles;
#endif /* CONFIG_SCHED_THREAD_USAGE_ANALYSIS */
stats->idle_cycles += tmp_stats.idle_cycles;
}
#endif /* CONFIG_SCHED_THREAD_USAGE_ALL */
return 0;
}
int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
{
if (stats == NULL) {
return -EINVAL;
}
*stats = (k_thread_runtime_stats_t) {};
#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
#ifdef CONFIG_SMP
z_sched_cpu_usage(cpu, stats);
#else
__ASSERT(cpu == 0, "cpu filter out of bounds");
ARG_UNUSED(cpu);
z_sched_cpu_usage(0, stats);
#endif
#endif
return 0;
}
#ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP
/** Pointer to thread which needs to be cleaned up. */
static struct k_thread *thread_to_cleanup;
/** Spinlock for thread abort cleanup. */
static struct k_spinlock thread_cleanup_lock;
#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
static void *thread_cleanup_stack_addr;
static size_t thread_cleanup_stack_sz;
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
void defer_thread_cleanup(struct k_thread *thread)
{
/* Note when adding new deferred cleanup steps:
* - The thread object may have been overwritten by the time
* the actual cleanup is being done (e.g. thread object
* allocated on a stack). So stash any necessary data here
* that will be used in the actual cleanup steps.
*/
thread_to_cleanup = thread;
#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
/* Note that the permission of the stack should have been
* stripped of user thread access due to the thread having
* already exited from a memory domain. That is done via
* k_thread_abort().
*/
/* Stash the address and size so the region can be unmapped
* later.
*/
thread_cleanup_stack_addr = thread->stack_info.mapped.addr;
thread_cleanup_stack_sz = thread->stack_info.mapped.sz;
/* The stack is now considered un-usable. This should prevent any functions
* from looking directly into the mapped stack if they are made to be aware
* of memory mapped stacks, e.g., z_stack_space_get().
*/
thread->stack_info.mapped.addr = NULL;
thread->stack_info.mapped.sz = 0;
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
}
void do_thread_cleanup(struct k_thread *thread)
{
/* Note when adding new actual cleanup steps:
* - The thread object may have been overwritten when this is
* called. So avoid using any data from the thread object.
*/
ARG_UNUSED(thread);
#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
if (thread_cleanup_stack_addr != NULL) {
k_mem_unmap_phys_guard(thread_cleanup_stack_addr,
thread_cleanup_stack_sz, false);
thread_cleanup_stack_addr = NULL;
}
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
}
void k_thread_abort_cleanup(struct k_thread *thread)
{
K_SPINLOCK(&thread_cleanup_lock) {
if (thread_to_cleanup != NULL) {
/* Finish the pending one first. */
do_thread_cleanup(thread_to_cleanup);
thread_to_cleanup = NULL;
}
if (thread == _current) {
/* Need to defer for current running thread as the cleanup
* might result in exception. Actual cleanup will be done
* at the next time k_thread_abort() is called, or at thread
* creation if the same thread object is being reused. This
* is to make sure the cleanup code no longer needs this
* thread's stack. This is not exactly ideal as the stack
* may still be memory mapped for a while. However, this is
* a simple solution without a) the need to workaround
* the schedule lock during k_thread_abort(), b) creating
* another thread to perform the cleanup, and c) does not
* require architecture code support (e.g. via exception).
*/
defer_thread_cleanup(thread);
} else {
/* Not the current running thread, so we are safe to do
* cleanups.
*/
do_thread_cleanup(thread);
}
}
}
void k_thread_abort_cleanup_check_reuse(struct k_thread *thread)
{
K_SPINLOCK(&thread_cleanup_lock) {
/* This is to guard reuse of the same thread object and make sure
* any pending cleanups of it needs to be finished before the thread
* object can be reused.
*/
if (thread_to_cleanup == thread) {
do_thread_cleanup(thread_to_cleanup);
thread_to_cleanup = NULL;
}
}
}
#endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */