blob: 867d2019250054c9f0660848ef223e24d7ec5f06 [file] [log] [blame]
/*
* Copyright (c) 2016 Jean-Paul Etienne <fractalclone@gmail.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <toolchain.h>
#include <linker/sections.h>
#include <kernel_structs.h>
#include <offsets_short.h>
/* imports */
GDATA(_sw_isr_table)
GTEXT(__soc_save_context)
GTEXT(__soc_restore_context)
GTEXT(__soc_is_irq)
GTEXT(__soc_handle_irq)
GTEXT(_Fault)
GTEXT(_k_neg_eagain)
GTEXT(_is_next_thread_current)
GTEXT(_get_next_ready_thread)
#ifdef CONFIG_KERNEL_EVENT_LOGGER_CONTEXT_SWITCH
GTEXT(_sys_k_event_logger_context_switch)
#endif
#ifdef CONFIG_KERNEL_EVENT_LOGGER_SLEEP
GTEXT(_sys_k_event_logger_exit_sleep)
#endif
#ifdef CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT
GTEXT(_sys_k_event_logger_interrupt)
#endif
#ifdef CONFIG_IRQ_OFFLOAD
GTEXT(_offload_routine)
#endif
#ifdef CONFIG_TIMESLICING
GTEXT(_update_time_slice_before_swap)
#endif
/* exports */
GTEXT(__irq_wrapper)
/* use ABI name of registers for the sake of simplicity */
/*
* ISR is handled at both ARCH and SOC levels.
* At the ARCH level, ISR handles basic context saving/restore of registers
* onto/from the thread stack and calls corresponding IRQ function registered
* at driver level.
* At SOC level, ISR handles saving/restoring of SOC-specific registers
* onto/from the thread stack (handled via __soc_save_context and
* __soc_restore_context functions). SOC level save/restore context
* is accounted for only if CONFIG_RISCV_SOC_CONTEXT_SAVE variable is set
*
* Moreover, given that RISC-V architecture does not provide a clear ISA
* specification about interrupt handling, each RISC-V SOC handles it in
* its own way. Hence, the generic RISC-V ISR handler expects the following
* functions to be provided at the SOC level:
* __soc_is_irq: to check if the exception is the result of an interrupt or not.
* __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in
* SOC-specific IRQ register)
*/
/*
* Handler called upon each exception/interrupt/fault
* In this architecture, system call (ECALL) is used to perform context
* switching or IRQ offloading (when enabled).
*/
SECTION_FUNC(exception.entry, __irq_wrapper)
/* Allocate space on thread stack to save registers */
addi sp, sp, -__NANO_ESF_SIZEOF
/*
* Save caller-saved registers on current thread stack.
* NOTE: need to be updated to account for floating-point registers
* floating-point registers should be accounted for when corresponding
* config variable is set
*/
sw ra, __NANO_ESF_ra_OFFSET(sp)
sw gp, __NANO_ESF_gp_OFFSET(sp)
sw tp, __NANO_ESF_tp_OFFSET(sp)
sw t0, __NANO_ESF_t0_OFFSET(sp)
sw t1, __NANO_ESF_t1_OFFSET(sp)
sw t2, __NANO_ESF_t2_OFFSET(sp)
sw t3, __NANO_ESF_t3_OFFSET(sp)
sw t4, __NANO_ESF_t4_OFFSET(sp)
sw t5, __NANO_ESF_t5_OFFSET(sp)
sw t6, __NANO_ESF_t6_OFFSET(sp)
sw a0, __NANO_ESF_a0_OFFSET(sp)
sw a1, __NANO_ESF_a1_OFFSET(sp)
sw a2, __NANO_ESF_a2_OFFSET(sp)
sw a3, __NANO_ESF_a3_OFFSET(sp)
sw a4, __NANO_ESF_a4_OFFSET(sp)
sw a5, __NANO_ESF_a5_OFFSET(sp)
sw a6, __NANO_ESF_a6_OFFSET(sp)
sw a7, __NANO_ESF_a7_OFFSET(sp)
/* Save MEPC register */
csrr t0, mepc
sw t0, __NANO_ESF_mepc_OFFSET(sp)
/* Save SOC-specific MSTATUS register */
csrr t0, SOC_MSTATUS_REG
sw t0, __NANO_ESF_mstatus_OFFSET(sp)
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
/* Handle context saving at SOC level. */
jal ra, __soc_save_context
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
/*
* Check if exception is the result of an interrupt or not.
* (SOC dependent). Following the RISC-V architecture spec, the MSB
* of the mcause register is used to indicate whether an exception
* is the result of an interrupt or an exception/fault. But for some
* SOCs (like pulpino or riscv-qemu), the MSB is never set to indicate
* interrupt. Hence, check for interrupt/exception via the __soc_is_irq
* function (that needs to be implemented by each SOC). The result is
* returned via register a0 (1: interrupt, 0 exception)
*/
jal ra, __soc_is_irq
/* If a0 != 0, jump to is_interrupt */
addi t1, x0, 0
bnez a0, is_interrupt
/*
* If exception is not an interrupt, MEPC will contain
* the instruction address, which has caused the exception.
* Increment saved MEPC by 4 to prevent running into the
* exception again, upon exiting the ISR.
*/
lw t0, __NANO_ESF_mepc_OFFSET(sp)
addi t0, t0, 4
sw t0, __NANO_ESF_mepc_OFFSET(sp)
/*
* If the exception is the result of an ECALL, check whether to
* perform a context-switch or an IRQ offload. Otherwise call _Fault
* to report the exception.
*/
csrr t0, mcause
li t2, SOC_MCAUSE_EXP_MASK
and t0, t0, t2
li t1, SOC_MCAUSE_ECALL_EXP
/*
* If mcause == SOC_MCAUSE_ECALL_EXP, handle system call,
* otherwise handle fault
*/
#ifdef CONFIG_IRQ_OFFLOAD
/* If not system call, jump to is_fault */
bne t0, t1, is_fault
/*
* Determine if the system call is the result of an IRQ offloading.
* Done by checking if _offload_routine is not pointing to NULL.
* If NULL, jump to reschedule to perform a context-switch, otherwise,
* jump to is_interrupt to handle the IRQ offload.
*/
la t0, _offload_routine
lw t1, 0x00(t0)
beqz t1, reschedule
bnez t1, is_interrupt
is_fault:
#else
/*
* Go to reschedule to handle context-switch if system call,
* otherwise call _Fault to handle exception
*/
beq t0, t1, reschedule
#endif
/*
* Call _Fault to handle exception.
* Stack pointer is pointing to a NANO_ESF structure, pass it
* to _Fault (via register a0).
* If _Fault shall return, set return address to no_reschedule
* to restore stack.
*/
addi a0, sp, 0
la ra, no_reschedule
tail _Fault
is_interrupt:
/*
* Save current thread stack pointer and switch
* stack pointer to interrupt stack.
*/
/* Save thread stack pointer to temp register t0 */
addi t0, sp, 0
/* Switch to interrupt stack */
la t2, _kernel
lw sp, _kernel_offset_to_irq_stack(t2)
/*
* Save thread stack pointer on interrupt stack
* In RISC-V, stack pointer needs to be 16-byte aligned
*/
addi sp, sp, -16
sw t0, 0x00(sp)
on_irq_stack:
/* Increment _kernel.nested variable */
lw t3, _kernel_offset_to_nested(t2)
addi t3, t3, 1
sw t3, _kernel_offset_to_nested(t2)
/*
* If we are here due to a system call, t1 register should != 0.
* In this case, perform IRQ offloading, otherwise jump to call_irq
*/
beqz t1, call_irq
/*
* Call _irq_do_offload to handle IRQ offloading.
* Set return address to on_thread_stack in order to jump there
* upon returning from _irq_do_offload
*/
la ra, on_thread_stack
tail _irq_do_offload
call_irq:
#ifdef CONFIG_KERNEL_EVENT_LOGGER_SLEEP
call _sys_k_event_logger_exit_sleep
#endif
#ifdef CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT
call _sys_k_event_logger_interrupt
#endif
/* Get IRQ causing interrupt */
csrr a0, mcause
li t0, SOC_MCAUSE_EXP_MASK
and a0, a0, t0
/*
* Clear pending IRQ generating the interrupt at SOC level
* Pass IRQ number to __soc_handle_irq via register a0
*/
jal ra, __soc_handle_irq
/*
* Call corresponding registered function in _sw_isr_table.
* (table is 8-bytes wide, we should shift index by 3)
*/
la t0, _sw_isr_table
slli a0, a0, 3
add t0, t0, a0
/* Load argument in a0 register */
lw a0, 0x00(t0)
/* Load ISR function address in register t1 */
lw t1, 0x04(t0)
/* Call ISR function */
jalr ra, t1
on_thread_stack:
/* Get reference to _kernel */
la t1, _kernel
/* Decrement _kernel.nested variable */
lw t2, _kernel_offset_to_nested(t1)
addi t2, t2, -1
sw t2, _kernel_offset_to_nested(t1)
/* Restore thread stack pointer */
lw t0, 0x00(sp)
addi sp, t0, 0
#ifdef CONFIG_STACK_SENTINEL
call _check_stack_sentinel
la t1, _kernel
#endif
#ifdef CONFIG_PREEMPT_ENABLED
/*
* Check if we need to perform a reschedule
*/
/* Get pointer to _kernel.current */
lw t2, _kernel_offset_to_current(t1)
/*
* If non-preemptible thread, do not schedule
* (see explanation of preempt field in kernel_structs.h
*/
lhu t3, _thread_offset_to_preempt(t2)
li t4, _NON_PREEMPT_THRESHOLD
bgeu t3, t4, no_reschedule
/*
* Check if next thread to schedule is current thread.
* If yes do not perform a reschedule
*/
lw t3, _kernel_offset_to_ready_q_cache(t1)
beq t3, t2, no_reschedule
#else
j no_reschedule
#endif /* CONFIG_PREEMPT_ENABLED */
reschedule:
#if CONFIG_TIMESLICING
call _update_time_slice_before_swap
#endif
#if CONFIG_KERNEL_EVENT_LOGGER_CONTEXT_SWITCH
call _sys_k_event_logger_context_switch
#endif /* CONFIG_KERNEL_EVENT_LOGGER_CONTEXT_SWITCH */
/* Get reference to _kernel */
la t0, _kernel
/* Get pointer to _kernel.current */
lw t1, _kernel_offset_to_current(t0)
/*
* Save callee-saved registers of current thread
* prior to handle context-switching
*/
sw s0, _thread_offset_to_s0(t1)
sw s1, _thread_offset_to_s1(t1)
sw s2, _thread_offset_to_s2(t1)
sw s3, _thread_offset_to_s3(t1)
sw s4, _thread_offset_to_s4(t1)
sw s5, _thread_offset_to_s5(t1)
sw s6, _thread_offset_to_s6(t1)
sw s7, _thread_offset_to_s7(t1)
sw s8, _thread_offset_to_s8(t1)
sw s9, _thread_offset_to_s9(t1)
sw s10, _thread_offset_to_s10(t1)
sw s11, _thread_offset_to_s11(t1)
/*
* Save stack pointer of current thread and set the default return value
* of _Swap to _k_neg_eagain for the thread.
*/
sw sp, _thread_offset_to_sp(t1)
la t2, _k_neg_eagain
lw t3, 0x00(t2)
sw t3, _thread_offset_to_swap_return_value(t1)
/* Get next thread to schedule. */
lw t1, _kernel_offset_to_ready_q_cache(t0)
/*
* Set _kernel.current to new thread loaded in t1
*/
sw t1, _kernel_offset_to_current(t0)
/* Switch to new thread stack */
lw sp, _thread_offset_to_sp(t1)
/* Restore callee-saved registers of new thread */
lw s0, _thread_offset_to_s0(t1)
lw s1, _thread_offset_to_s1(t1)
lw s2, _thread_offset_to_s2(t1)
lw s3, _thread_offset_to_s3(t1)
lw s4, _thread_offset_to_s4(t1)
lw s5, _thread_offset_to_s5(t1)
lw s6, _thread_offset_to_s6(t1)
lw s7, _thread_offset_to_s7(t1)
lw s8, _thread_offset_to_s8(t1)
lw s9, _thread_offset_to_s9(t1)
lw s10, _thread_offset_to_s10(t1)
lw s11, _thread_offset_to_s11(t1)
no_reschedule:
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
/* Restore context at SOC level */
jal ra, __soc_restore_context
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
/* Restore MEPC register */
lw t0, __NANO_ESF_mepc_OFFSET(sp)
csrw mepc, t0
/* Restore SOC-specific MSTATUS register */
lw t0, __NANO_ESF_mstatus_OFFSET(sp)
csrw SOC_MSTATUS_REG, t0
/* Restore caller-saved registers from thread stack */
lw ra, __NANO_ESF_ra_OFFSET(sp)
lw gp, __NANO_ESF_gp_OFFSET(sp)
lw tp, __NANO_ESF_tp_OFFSET(sp)
lw t0, __NANO_ESF_t0_OFFSET(sp)
lw t1, __NANO_ESF_t1_OFFSET(sp)
lw t2, __NANO_ESF_t2_OFFSET(sp)
lw t3, __NANO_ESF_t3_OFFSET(sp)
lw t4, __NANO_ESF_t4_OFFSET(sp)
lw t5, __NANO_ESF_t5_OFFSET(sp)
lw t6, __NANO_ESF_t6_OFFSET(sp)
lw a0, __NANO_ESF_a0_OFFSET(sp)
lw a1, __NANO_ESF_a1_OFFSET(sp)
lw a2, __NANO_ESF_a2_OFFSET(sp)
lw a3, __NANO_ESF_a3_OFFSET(sp)
lw a4, __NANO_ESF_a4_OFFSET(sp)
lw a5, __NANO_ESF_a5_OFFSET(sp)
lw a6, __NANO_ESF_a6_OFFSET(sp)
lw a7, __NANO_ESF_a7_OFFSET(sp)
/* Release stack space */
addi sp, sp, __NANO_ESF_SIZEOF
/* Call SOC_ERET to exit ISR */
SOC_ERET