|  | /* | 
|  | * Copyright (c) 2018, Nordic Semiconductor ASA | 
|  | * Copyright (c) 2018 Sundar Subramaniyan <sundar.subramaniyan@gmail.com> | 
|  | * | 
|  | * SPDX-License-Identifier: Apache-2.0 | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * @file  usb_dc_nrfx.c | 
|  | * @brief Nordic USB device controller driver | 
|  | * | 
|  | * The driver implements the interface between the USBD peripheral | 
|  | * driver from nrfx package and the operating system. | 
|  | */ | 
|  |  | 
|  | #include <soc.h> | 
|  | #include <string.h> | 
|  | #include <stdio.h> | 
|  | #include <kernel.h> | 
|  | #include <usb/usb_dc.h> | 
|  | #include <usb/usb_device.h> | 
|  | #include <clock_control.h> | 
|  | #include <hal/nrf_power.h> | 
|  | #include <drivers/clock_control/nrf_clock_control.h> | 
|  | #include <nrfx_usbd.h> | 
|  |  | 
|  |  | 
|  | #define LOG_LEVEL CONFIG_USB_DRIVER_LOG_LEVEL | 
|  | #include <logging/log.h> | 
|  | LOG_MODULE_REGISTER(usb_nrfx); | 
|  |  | 
|  | #define USB_BREQUEST_SETADDRESS 		0x05 | 
|  | #define USB_BMREQUESTTYPE_DIR_POS		7uL | 
|  | #define USB_BMREQUESTTYPE_DIR_MASK		(1uL << USB_BMREQUESTTYPE_DIR_POS) | 
|  | #define USB_BMREQUESTTYPE_DIR_HOSTTODEVICE_MASK	0uL | 
|  | #define USB_BMREQUESTTYPE_DIR_DEVICETOHOST_MASK	(1uL << USB_BMREQUESTTYPE_DIR_POS) | 
|  | #define USB_BMREQUESTTYPE_TYPE_POS		5uL | 
|  | #define USB_BMREQUESTTYPE_TYPE_MASK		(3uL << USB_BMREQUESTTYPE_TYPE_POS) | 
|  | #define USB_BMREQUESTTYPE_TYPE_STANDARD_MASK	0uL | 
|  | #define USB_BMREQUESTTYPE_TYPE_CLASS_MASK	(1uL << USB_BMREQUESTTYPE_TYPE_POS) | 
|  | #define USB_BMREQUESTTYPE_TYPE_CLASS_VENDOR	(2uL << USB_BMREQUESTTYPE_TYPE_POS) | 
|  |  | 
|  | #define MAX_EP_BUF_SZ           64UL | 
|  | #define MAX_ISO_EP_BUF_SZ       1024UL | 
|  |  | 
|  | #define USBD_EPSTATUS_EPIN_MASK         (0x1FF << USBD_EPSTATUS_EPIN0_Pos) | 
|  | #define USBD_EPSTATUS_EPOUT_MASK        (0x1FF << USBD_EPSTATUS_EPOUT0_Pos) | 
|  | #define USBD_EPDATASTATUS_EPIN_MASK     (0x7F << USBD_EPDATASTATUS_EPIN1_Pos) | 
|  | #define USBD_EPDATASTATUS_EPOUT_MASK    (0x7F << USBD_EPDATASTATUS_EPOUT1_Pos) | 
|  |  | 
|  |  | 
|  | /** | 
|  | * @brief nRF USBD peripheral states | 
|  | */ | 
|  | enum usbd_periph_state { | 
|  | USBD_DETACHED, | 
|  | USBD_ATTACHED, | 
|  | USBD_POWERED, | 
|  | USBD_SUSPENDED, | 
|  | USBD_DEFAULT, | 
|  | USBD_ADDRESS_SET, | 
|  | USBD_CONFIGURED, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @brief Endpoint event types. | 
|  | */ | 
|  | enum usbd_ep_event_type { | 
|  | EP_EVT_SETUP_RECV, | 
|  | EP_EVT_RECV_REQ, | 
|  | EP_EVT_RECV_COMPLETE, | 
|  | EP_EVT_WRITE_COMPLETE, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @brief USBD peripheral event types. | 
|  | */ | 
|  | enum usbd_event_type { | 
|  | USBD_EVT_POWER, | 
|  | USBD_EVT_EP, | 
|  | USBD_EVT_RESET, | 
|  | USBD_EVT_SOF, | 
|  | USBD_EVT_REINIT | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @brief Endpoint configuration. | 
|  | * | 
|  | * @param cb      Endpoint callback. | 
|  | * @param max_sz  Max packet size supported by endpoint. | 
|  | * @param en      Enable/Disable flag. | 
|  | * @param addr    Endpoint address. | 
|  | * @param type    Endpoint type. | 
|  | */ | 
|  | struct nrf_usbd_ep_cfg { | 
|  | usb_dc_ep_callback cb; | 
|  | u32_t max_sz; | 
|  | bool en; | 
|  | u8_t addr; | 
|  | enum usb_dc_ep_type type; | 
|  |  | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @brief Endpoint buffer | 
|  | * | 
|  | * @param len    Remaining length to be read/written. | 
|  | * @param block  Mempool block, for freeing up buffer after use. | 
|  | * @param data	 Pointer to the data buffer	for the endpoint. | 
|  | * @param curr	 Pointer to the current offset in the endpoint buffer. | 
|  | */ | 
|  | struct nrf_usbd_ep_buf { | 
|  | u32_t len; | 
|  | struct k_mem_block block; | 
|  | u8_t *data; | 
|  | u8_t *curr; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @brief Endpoint context | 
|  | * | 
|  | * @param cfg			Endpoint configuration | 
|  | * @param buf			Endpoint buffer | 
|  | * @param read_complete		A flag indicating that DMA read operation has been completed. | 
|  | * @param read_pending		A flag indicating that the Host has requested a data transfer. | 
|  | * @param write_in_progress	A flag indicating that write operation has been scheduled. | 
|  | * @param write_fragmented	A flag indicating that IN transfer has been fragmented. | 
|  | */ | 
|  | struct nrf_usbd_ep_ctx { | 
|  | struct nrf_usbd_ep_cfg cfg; | 
|  | struct nrf_usbd_ep_buf buf; | 
|  | volatile bool read_complete; | 
|  | volatile bool read_pending; | 
|  | volatile bool write_in_progress; | 
|  | bool write_fragmented; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @brief Endpoint event structure | 
|  | * | 
|  | * @param ep		Endpoint control block pointer | 
|  | * @param evt_type	Event type | 
|  | */ | 
|  | struct usbd_ep_event { | 
|  | struct nrf_usbd_ep_ctx *ep; | 
|  | enum usbd_ep_event_type evt_type; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @brief Power event structure | 
|  | * | 
|  | * @param state		New USBD peripheral state. | 
|  | */ | 
|  | struct usbd_pwr_event { | 
|  | enum usbd_periph_state state; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @brief Endpoint USB event | 
|  | *	  Used by ISR to send events to work handler | 
|  | * | 
|  | * @param node		Used by the kernel for FIFO management | 
|  | * @param block		Mempool block pointer for freeing up after use | 
|  | * @param evt		Event data field | 
|  | * @param evt_type	Type of event that has occurred from the USBD peripheral | 
|  | */ | 
|  | struct usbd_event { | 
|  | sys_snode_t node; | 
|  | struct k_mem_block block; | 
|  | union { | 
|  | struct usbd_ep_event ep_evt; | 
|  | struct usbd_pwr_event pwr_evt; | 
|  | } evt; | 
|  | enum usbd_event_type evt_type; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @brief Fifo element pool | 
|  | *	Used for allocating fifo elements to pass from ISR to work handler | 
|  | * TODO: The number of FIFO elements is an arbitrary number now but it should | 
|  | * be derived from the theoretical number of backlog events possible depending | 
|  | * on the number of endpoints configured. | 
|  | */ | 
|  | #define FIFO_ELEM_MIN_SZ        sizeof(struct usbd_event) | 
|  | #define FIFO_ELEM_MAX_SZ        sizeof(struct usbd_event) | 
|  | #define FIFO_ELEM_COUNT         CONFIG_USB_NRFX_EVT_QUEUE_SIZE | 
|  | #define FIFO_ELEM_ALIGN         sizeof(unsigned int) | 
|  |  | 
|  | K_MEM_POOL_DEFINE(fifo_elem_pool, FIFO_ELEM_MIN_SZ, FIFO_ELEM_MAX_SZ, | 
|  | FIFO_ELEM_COUNT, FIFO_ELEM_ALIGN); | 
|  |  | 
|  | #if CONFIG_USB_NRFX_EVT_QUEUE_SIZE < 4 | 
|  | #error Invalid USBD event queue size (CONFIG_USB_NRFX_EVT_QUEUE_SIZE). Minimum size: 4. | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * @brief Endpoint buffer pool | 
|  | *	Used for allocating buffers for the endpoints' data transfer | 
|  | *	Max pool size possible: 3072 Bytes (16 EP * 64B + 2 ISO * 1024B) | 
|  | */ | 
|  |  | 
|  | /** Number of IN Endpoints configured (including control) */ | 
|  | #define CFG_EPIN_CNT (DT_NORDIC_NRF_USBD_USBD_0_NUM_IN_ENDPOINTS + \ | 
|  | DT_NORDIC_NRF_USBD_USBD_0_NUM_BIDIR_ENDPOINTS) | 
|  |  | 
|  | /** Number of OUT Endpoints configured (including control) */ | 
|  | #define CFG_EPOUT_CNT (DT_NORDIC_NRF_USBD_USBD_0_NUM_OUT_ENDPOINTS + \ | 
|  | DT_NORDIC_NRF_USBD_USBD_0_NUM_BIDIR_ENDPOINTS) | 
|  |  | 
|  | /** Number of ISO IN Endpoints */ | 
|  | #define CFG_EP_ISOIN_CNT DT_NORDIC_NRF_USBD_USBD_0_NUM_ISOIN_ENDPOINTS | 
|  |  | 
|  | /** Number of ISO OUT Endpoints */ | 
|  | #define CFG_EP_ISOOUT_CNT DT_NORDIC_NRF_USBD_USBD_0_NUM_ISOOUT_ENDPOINTS | 
|  |  | 
|  | /** ISO endpoint index */ | 
|  | #define EP_ISOIN_INDEX CFG_EPIN_CNT | 
|  | #define EP_ISOOUT_INDEX (CFG_EPIN_CNT + CFG_EP_ISOIN_CNT + CFG_EPOUT_CNT) | 
|  |  | 
|  | /** Minimum endpoint buffer size */ | 
|  | #define EP_BUF_MIN_SZ MAX_EP_BUF_SZ | 
|  |  | 
|  | /** Maximum endpoint buffer size */ | 
|  | #if (CFG_EP_ISOIN_CNT || CFG_EP_ISOOUT_CNT) | 
|  | #define EP_BUF_MAX_SZ MAX_ISO_EP_BUF_SZ | 
|  | #else | 
|  | #define EP_BUF_MAX_SZ MAX_EP_BUF_SZ | 
|  | #endif | 
|  |  | 
|  | /** Total endpoints configured */ | 
|  | #define CFG_EP_CNT (CFG_EPIN_CNT + CFG_EP_ISOIN_CNT + \ | 
|  | CFG_EPOUT_CNT + CFG_EP_ISOOUT_CNT) | 
|  |  | 
|  | /** Total buffer size for all endpoints */ | 
|  | #define EP_BUF_TOTAL ((CFG_EPIN_CNT * MAX_EP_BUF_SZ) +	       \ | 
|  | (CFG_EPOUT_CNT * MAX_EP_BUF_SZ) +	       \ | 
|  | (CFG_EP_ISOIN_CNT * MAX_ISO_EP_BUF_SZ) + \ | 
|  | (CFG_EP_ISOOUT_CNT * MAX_ISO_EP_BUF_SZ)) | 
|  |  | 
|  | /** Total number of maximum sized buffers needed */ | 
|  | #define EP_BUF_COUNT ((EP_BUF_TOTAL / EP_BUF_MAX_SZ) + \ | 
|  | ((EP_BUF_TOTAL % EP_BUF_MAX_SZ) ? 1 : 0)) | 
|  |  | 
|  | /** 4 Byte Buffer alignment required by hardware */ | 
|  | #define EP_BUF_ALIGN sizeof(unsigned int) | 
|  |  | 
|  | K_MEM_POOL_DEFINE(ep_buf_pool, EP_BUF_MIN_SZ, EP_BUF_MAX_SZ, | 
|  | EP_BUF_COUNT, EP_BUF_ALIGN); | 
|  |  | 
|  | /** | 
|  | * @brief USBD control structure | 
|  | * | 
|  | * @param status_cb	Status callback for USB DC notifications | 
|  | * @param attached	USBD Attached flag | 
|  | * @param ready		USBD Ready flag set after pullup | 
|  | * @param usb_work	USBD work item | 
|  | * @param work_queue	FIFO used for queuing up events from ISR | 
|  | * @param drv_lock	Mutex for thread-safe nrfx driver use | 
|  | * @param ep_ctx	Endpoint contexts | 
|  | * @param ctrl_read_len	State of control read operation (EP0). | 
|  | */ | 
|  | struct nrf_usbd_ctx { | 
|  | usb_dc_status_callback status_cb; | 
|  |  | 
|  | bool attached; | 
|  | bool ready; | 
|  |  | 
|  | struct k_work  usb_work; | 
|  | struct k_mutex drv_lock; | 
|  |  | 
|  | struct nrf_usbd_ep_ctx ep_ctx[CFG_EP_CNT]; | 
|  |  | 
|  | u16_t ctrl_read_len; | 
|  | }; | 
|  |  | 
|  |  | 
|  | K_FIFO_DEFINE(work_queue); | 
|  |  | 
|  |  | 
|  | static struct nrf_usbd_ctx usbd_ctx = { | 
|  | .attached = false, | 
|  | .ready = false, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static inline struct nrf_usbd_ctx *get_usbd_ctx(void) | 
|  | { | 
|  | return &usbd_ctx; | 
|  | } | 
|  |  | 
|  | static inline nrfx_usbd_ep_t ep_addr_to_nrfx(uint8_t ep) | 
|  | { | 
|  | return (nrfx_usbd_ep_t)ep; | 
|  | } | 
|  |  | 
|  | static inline uint8_t nrfx_addr_to_ep(nrfx_usbd_ep_t ep) | 
|  | { | 
|  | return (uint8_t)ep; | 
|  | } | 
|  |  | 
|  | static inline bool ep_is_valid(const u8_t ep) | 
|  | { | 
|  | u8_t ep_num = NRF_USBD_EP_NR_GET(ep); | 
|  |  | 
|  | if (NRF_USBD_EPIN_CHECK(ep)) { | 
|  | if (unlikely(NRF_USBD_EPISO_CHECK(ep))) { | 
|  | if (CFG_EP_ISOIN_CNT == 0) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (ep_num >= CFG_EPIN_CNT) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (unlikely(NRF_USBD_EPISO_CHECK(ep))) { | 
|  | if (CFG_EP_ISOOUT_CNT == 0) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (ep_num >= CFG_EPOUT_CNT) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct nrf_usbd_ep_ctx *endpoint_ctx(const u8_t ep) | 
|  | { | 
|  | struct nrf_usbd_ctx *ctx; | 
|  | u8_t ep_num; | 
|  |  | 
|  | if (!ep_is_valid(ep)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ctx = get_usbd_ctx(); | 
|  | ep_num = NRF_USBD_EP_NR_GET(ep); | 
|  |  | 
|  | if (NRF_USBD_EPIN_CHECK(ep)) { | 
|  | if (unlikely(NRF_USBD_EPISO_CHECK(ep))) { | 
|  | return &ctx->ep_ctx[EP_ISOIN_INDEX]; | 
|  | } else { | 
|  | return &ctx->ep_ctx[ep_num]; | 
|  | } | 
|  | } else { | 
|  | if (unlikely(NRF_USBD_EPISO_CHECK(ep))) { | 
|  | return &ctx->ep_ctx[EP_ISOOUT_INDEX]; | 
|  | } else { | 
|  | return &ctx->ep_ctx[CFG_EPIN_CNT + | 
|  | CFG_EP_ISOIN_CNT + | 
|  | ep_num]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct nrf_usbd_ep_ctx *in_endpoint_ctx(const u8_t ep) | 
|  | { | 
|  | return endpoint_ctx(NRF_USBD_EPIN(ep)); | 
|  | } | 
|  |  | 
|  | static struct nrf_usbd_ep_ctx *out_endpoint_ctx(const u8_t ep) | 
|  | { | 
|  | return endpoint_ctx(NRF_USBD_EPOUT(ep)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief Schedule USBD event processing. | 
|  | * | 
|  | * Should be called after usbd_evt_put(). | 
|  | */ | 
|  | static inline void usbd_work_schedule(void) | 
|  | { | 
|  | k_work_submit(&get_usbd_ctx()->usb_work); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief Free previously allocated USBD event. | 
|  | * | 
|  | * Should be called after usbd_evt_get(). | 
|  | * | 
|  | * @param Pointer to the USBD event structure. | 
|  | */ | 
|  | static inline void usbd_evt_free(struct usbd_event *ev) | 
|  | { | 
|  | k_mem_pool_free(&ev->block); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief Enqueue USBD event. | 
|  | * | 
|  | * @param Pointer to the previously allocated and filled event structure. | 
|  | */ | 
|  | static inline void usbd_evt_put(struct usbd_event *ev) | 
|  | { | 
|  | k_fifo_put(&work_queue, ev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief Get next enqueued USBD event if present. | 
|  | */ | 
|  | static inline struct usbd_event *usbd_evt_get(void) | 
|  | { | 
|  | return k_fifo_get(&work_queue, K_NO_WAIT); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief Drop all enqueued events. | 
|  | */ | 
|  | static inline void usbd_evt_flush(void) | 
|  | { | 
|  | struct usbd_event *ev; | 
|  |  | 
|  | do { | 
|  | ev = usbd_evt_get(); | 
|  | if (ev) { | 
|  | usbd_evt_free(ev); | 
|  | } | 
|  | } while (ev != NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief Allocate USBD event. | 
|  | * | 
|  | * This function should be called prior to usbd_evt_put(). | 
|  | * | 
|  | * @returns Pointer to the allocated event or NULL if there was no space left. | 
|  | */ | 
|  | static inline struct usbd_event *usbd_evt_alloc(void) | 
|  | { | 
|  | int ret; | 
|  | struct usbd_event *ev; | 
|  | struct k_mem_block block; | 
|  |  | 
|  | ret = k_mem_pool_alloc(&fifo_elem_pool, &block, | 
|  | sizeof(struct usbd_event), | 
|  | K_NO_WAIT); | 
|  |  | 
|  | if (ret < 0) { | 
|  | LOG_ERR("USBD event allocation failed!"); | 
|  |  | 
|  | /* This should NOT happen in a properly designed system. | 
|  | * Allocation may fail if workqueue thread is starved | 
|  | * or event queue size is too small (CONFIG_USB_NRFX_EVT_QUEUE_SIZE). | 
|  | * Wipe all events, free the space and schedule reinitialization. | 
|  | */ | 
|  | usbd_evt_flush(); | 
|  |  | 
|  | ret = k_mem_pool_alloc(&fifo_elem_pool, &block, | 
|  | sizeof(struct usbd_event), | 
|  | K_NO_WAIT); | 
|  | if (ret < 0) { | 
|  | /* This should never fail in a properly operating system. */ | 
|  | LOG_ERR("USBD event memory corrupted."); | 
|  | __ASSERT_NO_MSG(0); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ev = (struct usbd_event *)block.data; | 
|  | ev->block = block; | 
|  | ev->evt_type = USBD_EVT_REINIT; | 
|  | usbd_evt_put(ev); | 
|  | usbd_work_schedule(); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ev = (struct usbd_event *)block.data; | 
|  | ev->block = block; | 
|  |  | 
|  | return ev; | 
|  | } | 
|  |  | 
|  | void usb_dc_nrfx_power_event_callback(nrf_power_event_t event) | 
|  | { | 
|  | enum usbd_periph_state new_state; | 
|  |  | 
|  | switch (event) { | 
|  | case NRF_POWER_EVENT_USBDETECTED: | 
|  | new_state = USBD_ATTACHED; | 
|  | break; | 
|  | case NRF_POWER_EVENT_USBPWRRDY: | 
|  | new_state = USBD_POWERED; | 
|  | break; | 
|  | case NRF_POWER_EVENT_USBREMOVED: | 
|  | new_state = USBD_DETACHED; | 
|  | break; | 
|  | default: | 
|  | LOG_ERR("Unknown USB power event"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | struct usbd_event *ev = usbd_evt_alloc(); | 
|  |  | 
|  | if (!ev) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ev->evt_type = USBD_EVT_POWER; | 
|  | ev->evt.pwr_evt.state = new_state; | 
|  |  | 
|  |  | 
|  | usbd_evt_put(ev); | 
|  |  | 
|  | if (usbd_ctx.attached) { | 
|  | usbd_work_schedule(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief Enable/Disable the HF clock | 
|  | * | 
|  | * Toggle the HF clock. It needs to be enabled for USBD data exchange | 
|  | * | 
|  | * @param on		Set true to enable the HF clock, false to disable. | 
|  | * @param blocking	Set true to block wait till HF clock stabilizes. | 
|  | * | 
|  | * @return 0 on success, error number otherwise | 
|  | */ | 
|  | static int hf_clock_enable(bool on, bool blocking) | 
|  | { | 
|  | int ret = -ENODEV; | 
|  | struct device *clock; | 
|  | static bool clock_requested; | 
|  |  | 
|  | clock = device_get_binding(CONFIG_CLOCK_CONTROL_NRF_M16SRC_DRV_NAME); | 
|  | if (!clock) { | 
|  | LOG_ERR("NRF HF Clock device not found!"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (on) { | 
|  | if (clock_requested) { | 
|  | /* Do not request HFCLK multiple times. */ | 
|  | return 0; | 
|  | } | 
|  | ret = clock_control_on(clock, (void *)blocking); | 
|  | } else { | 
|  | if (!clock_requested) { | 
|  | /* Cancel the operation if clock has not | 
|  | * been requested by this driver before. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  | ret = clock_control_off(clock, (void *)blocking); | 
|  | } | 
|  |  | 
|  | if (ret && (blocking || (ret != -EINPROGRESS))) { | 
|  | LOG_ERR("HF clock %s fail: %d", | 
|  | on ? "start" : "stop", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | clock_requested = on; | 
|  | LOG_DBG("HF clock %s success (%d)", on ? "start" : "stop", ret); | 
|  |  | 
|  | /* NOTE: Non-blocking HF clock enable can return -EINPROGRESS | 
|  | * if HF clock start was already requested. Such error code | 
|  | * does not need to be propagated, hence returned value is 0. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void usbd_enable_endpoints(struct nrf_usbd_ctx *ctx) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < CFG_EPIN_CNT; i++) { | 
|  | ep_ctx = in_endpoint_ctx(i); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  |  | 
|  | if (ep_ctx->cfg.en) { | 
|  | nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep_ctx->cfg.addr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CFG_EP_ISOIN_CNT) { | 
|  | ep_ctx = in_endpoint_ctx(NRF_USBD_EPIN(8)); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  |  | 
|  | if (ep_ctx->cfg.en) { | 
|  | nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep_ctx->cfg.addr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < CFG_EPOUT_CNT; i++) { | 
|  | ep_ctx = out_endpoint_ctx(i); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  |  | 
|  | if (ep_ctx->cfg.en) { | 
|  | nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep_ctx->cfg.addr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CFG_EP_ISOOUT_CNT) { | 
|  | ep_ctx = out_endpoint_ctx(NRF_USBD_EPOUT(8)); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  |  | 
|  | if (ep_ctx->cfg.en) { | 
|  | nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep_ctx->cfg.addr)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief Reset endpoint state. | 
|  | * | 
|  | * Resets the internal logic state for a given endpoint. | 
|  | * | 
|  | * @param[in]  ep_cts   Endpoint structure control block | 
|  | */ | 
|  | static void ep_ctx_reset(struct nrf_usbd_ep_ctx *ep_ctx) | 
|  | { | 
|  | ep_ctx->buf.data = ep_ctx->buf.block.data; | 
|  | ep_ctx->buf.curr = ep_ctx->buf.data; | 
|  | ep_ctx->buf.len  = 0U; | 
|  |  | 
|  | ep_ctx->read_complete = true; | 
|  | ep_ctx->read_pending = false; | 
|  | ep_ctx->write_in_progress = false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief Initialize all endpoint structures. | 
|  | * | 
|  | * Endpoint buffers are allocated during the first call of this function. | 
|  | * This function may also be called again on every USB reset event | 
|  | * to reinitialize the state of all endpoints. | 
|  | */ | 
|  | static int eps_ctx_init(void) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  | int err; | 
|  | u32_t i; | 
|  |  | 
|  | for (i = 0U; i < CFG_EPIN_CNT; i++) { | 
|  | ep_ctx = in_endpoint_ctx(i); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  |  | 
|  | if (!ep_ctx->buf.block.data) { | 
|  | err = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block, | 
|  | MAX_EP_BUF_SZ, K_NO_WAIT); | 
|  | if (err < 0) { | 
|  | LOG_ERR("EP buffer alloc failed for EPIN%d", i); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | ep_ctx_reset(ep_ctx); | 
|  | } | 
|  |  | 
|  | for (i = 0U; i < CFG_EPOUT_CNT; i++) { | 
|  | ep_ctx = out_endpoint_ctx(i); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  |  | 
|  | if (!ep_ctx->buf.block.data) { | 
|  | err = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block, | 
|  | MAX_EP_BUF_SZ, K_NO_WAIT); | 
|  | if (err < 0) { | 
|  | LOG_ERR("EP buffer alloc failed for EPOUT%d", i); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | ep_ctx_reset(ep_ctx); | 
|  | } | 
|  |  | 
|  | if (CFG_EP_ISOIN_CNT) { | 
|  | ep_ctx = in_endpoint_ctx(NRF_USBD_EPIN(8)); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  |  | 
|  | if (!ep_ctx->buf.block.data) { | 
|  | err = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block, | 
|  | MAX_ISO_EP_BUF_SZ, K_NO_WAIT); | 
|  | if (err < 0) { | 
|  | LOG_ERR("EP buffer alloc failed for ISOIN"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | ep_ctx_reset(ep_ctx); | 
|  | } | 
|  |  | 
|  | if (CFG_EP_ISOOUT_CNT) { | 
|  | ep_ctx = out_endpoint_ctx(NRF_USBD_EPOUT(8)); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  |  | 
|  | if (!ep_ctx->buf.block.data) { | 
|  | err = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block, | 
|  | MAX_ISO_EP_BUF_SZ, K_NO_WAIT); | 
|  | if (err < 0) { | 
|  | LOG_ERR("EP buffer alloc failed for ISOOUT"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | ep_ctx_reset(ep_ctx); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void eps_ctx_uninit(void) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  | u32_t i; | 
|  |  | 
|  | for (i = 0U; i < CFG_EPIN_CNT; i++) { | 
|  | ep_ctx = in_endpoint_ctx(i); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  | k_mem_pool_free(&ep_ctx->buf.block); | 
|  | memset(ep_ctx, 0, sizeof(*ep_ctx)); | 
|  | } | 
|  |  | 
|  | for (i = 0U; i < CFG_EPOUT_CNT; i++) { | 
|  | ep_ctx = out_endpoint_ctx(i); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  | k_mem_pool_free(&ep_ctx->buf.block); | 
|  | memset(ep_ctx, 0, sizeof(*ep_ctx)); | 
|  | } | 
|  |  | 
|  | if (CFG_EP_ISOIN_CNT) { | 
|  | ep_ctx = in_endpoint_ctx(NRF_USBD_EPIN(8)); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  | k_mem_pool_free(&ep_ctx->buf.block); | 
|  | memset(ep_ctx, 0, sizeof(*ep_ctx)); | 
|  | } | 
|  |  | 
|  | if (CFG_EP_ISOOUT_CNT) { | 
|  | ep_ctx = out_endpoint_ctx(NRF_USBD_EPOUT(8)); | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  | k_mem_pool_free(&ep_ctx->buf.block); | 
|  | memset(ep_ctx, 0, sizeof(*ep_ctx)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void usbd_work_process_pwr_events(struct usbd_pwr_event *pwr_evt) | 
|  | { | 
|  | struct nrf_usbd_ctx *ctx = get_usbd_ctx(); | 
|  |  | 
|  | switch (pwr_evt->state) { | 
|  | case USBD_ATTACHED: | 
|  | LOG_DBG("USB detected"); | 
|  | nrfx_usbd_enable(); | 
|  | (void) hf_clock_enable(true, false); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case USBD_POWERED: | 
|  | LOG_DBG("USB Powered"); | 
|  | usbd_enable_endpoints(ctx); | 
|  | nrfx_usbd_start(true); | 
|  | ctx->ready = true; | 
|  |  | 
|  | if (ctx->status_cb) { | 
|  | ctx->status_cb(USB_DC_CONNECTED, NULL); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case USBD_DETACHED: | 
|  | LOG_DBG("USB Removed"); | 
|  | ctx->ready = false; | 
|  | nrfx_usbd_disable(); | 
|  | (void) hf_clock_enable(false, false); | 
|  |  | 
|  | if (ctx->status_cb) { | 
|  | ctx->status_cb(USB_DC_DISCONNECTED, NULL); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void usbd_work_process_setup(struct nrf_usbd_ep_ctx *ep_ctx) | 
|  | { | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  | __ASSERT(ep_ctx->cfg.type == USB_DC_EP_CONTROL, | 
|  | "Invalid event on CTRL EP."); | 
|  |  | 
|  | struct usb_setup_packet *usbd_setup; | 
|  |  | 
|  | /* SETUP packets are handled by USBD hardware. | 
|  | * For compatibility with the USB stack, | 
|  | * SETUP packet must be reassembled. | 
|  | */ | 
|  | usbd_setup = (struct usb_setup_packet *)ep_ctx->buf.data; | 
|  | memset(usbd_setup, 0, sizeof(struct usb_setup_packet)); | 
|  | usbd_setup->bmRequestType = nrf_usbd_setup_bmrequesttype_get(); | 
|  | usbd_setup->bRequest = nrf_usbd_setup_brequest_get(); | 
|  | usbd_setup->wValue = nrf_usbd_setup_wvalue_get(); | 
|  | usbd_setup->wIndex = nrf_usbd_setup_windex_get(); | 
|  | usbd_setup->wLength = nrf_usbd_setup_wlength_get(); | 
|  | ep_ctx->buf.len = sizeof(struct usb_setup_packet); | 
|  |  | 
|  | LOG_DBG("SETUP: r:%d rt:%d v:%d i:%d l:%d", | 
|  | (u32_t)usbd_setup->bRequest, | 
|  | (u32_t)usbd_setup->bmRequestType, | 
|  | (u32_t)usbd_setup->wValue, | 
|  | (u32_t)usbd_setup->wIndex, | 
|  | (u32_t)usbd_setup->wLength); | 
|  |  | 
|  | /* Inform the stack. */ | 
|  | ep_ctx->cfg.cb(ep_ctx->cfg.addr, USB_DC_EP_SETUP); | 
|  |  | 
|  | struct nrf_usbd_ctx *ctx = get_usbd_ctx(); | 
|  |  | 
|  | if (((usbd_setup->bmRequestType & USB_BMREQUESTTYPE_DIR_MASK) | 
|  | == USB_BMREQUESTTYPE_DIR_HOSTTODEVICE_MASK) | 
|  | && (usbd_setup->wLength)) { | 
|  | struct nrf_usbd_ctx *ctx = get_usbd_ctx(); | 
|  |  | 
|  | ctx->ctrl_read_len -= usbd_setup->wLength; | 
|  | nrfx_usbd_setup_data_clear(); | 
|  | } else { | 
|  | ctx->ctrl_read_len = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void usbd_work_process_recvreq(struct nrf_usbd_ctx *ctx, | 
|  | struct nrf_usbd_ep_ctx *ep_ctx) | 
|  | { | 
|  | if (!ep_ctx->read_pending) { | 
|  | return; | 
|  | } | 
|  | if (!ep_ctx->read_complete) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ep_ctx->read_pending = false; | 
|  | ep_ctx->read_complete = false; | 
|  |  | 
|  | k_mutex_lock(&ctx->drv_lock, K_FOREVER); | 
|  | NRFX_USBD_TRANSFER_OUT(transfer, ep_ctx->buf.data, | 
|  | ep_ctx->cfg.max_sz); | 
|  | nrfx_err_t err = nrfx_usbd_ep_transfer( | 
|  | ep_addr_to_nrfx(ep_ctx->cfg.addr), &transfer); | 
|  | if (err != NRFX_SUCCESS) { | 
|  | LOG_ERR("nRF USBD transfer error (OUT): %d.", err); | 
|  | } | 
|  | k_mutex_unlock(&ctx->drv_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline void usbd_work_process_ep_events(struct usbd_ep_event *ep_evt) | 
|  | { | 
|  | struct nrf_usbd_ctx *ctx = get_usbd_ctx(); | 
|  | struct nrf_usbd_ep_ctx *ep_ctx = ep_evt->ep; | 
|  |  | 
|  | __ASSERT_NO_MSG(ep_ctx); | 
|  |  | 
|  | switch (ep_evt->evt_type) { | 
|  | case EP_EVT_SETUP_RECV: | 
|  | usbd_work_process_setup(ep_ctx); | 
|  | break; | 
|  |  | 
|  | case EP_EVT_RECV_REQ: | 
|  | usbd_work_process_recvreq(ctx, ep_ctx); | 
|  | break; | 
|  |  | 
|  | case EP_EVT_RECV_COMPLETE: | 
|  | ep_ctx->cfg.cb(ep_ctx->cfg.addr, | 
|  | USB_DC_EP_DATA_OUT); | 
|  | break; | 
|  |  | 
|  | case EP_EVT_WRITE_COMPLETE: | 
|  | if ((ep_ctx->cfg.type == USB_DC_EP_CONTROL) | 
|  | && (!ep_ctx->write_fragmented)) { | 
|  | /* Trigger the hardware to perform | 
|  | * status stage, but only if there is | 
|  | * no more data to send (IN transfer | 
|  | * has not beed fragmented). | 
|  | */ | 
|  | k_mutex_lock(&ctx->drv_lock, K_FOREVER); | 
|  | nrfx_usbd_setup_clear(); | 
|  | k_mutex_unlock(&ctx->drv_lock); | 
|  | } | 
|  | ep_ctx->cfg.cb(ep_ctx->cfg.addr, | 
|  | USB_DC_EP_DATA_IN); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool dev_attached(void) | 
|  | { | 
|  | return get_usbd_ctx()->attached; | 
|  | } | 
|  |  | 
|  | static inline bool dev_ready(void) | 
|  | { | 
|  | return get_usbd_ctx()->ready; | 
|  | } | 
|  |  | 
|  | static void usbd_event_transfer_ctrl(nrfx_usbd_evt_t const *const p_event) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx = | 
|  | endpoint_ctx(p_event->data.eptransfer.ep); | 
|  |  | 
|  | if (NRF_USBD_EPIN_CHECK(p_event->data.eptransfer.ep)) { | 
|  | switch (p_event->data.eptransfer.status) { | 
|  | case NRFX_USBD_EP_OK: { | 
|  | struct usbd_event *ev = usbd_evt_alloc(); | 
|  |  | 
|  | if (!ev) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ep_ctx->write_in_progress = false; | 
|  | ev->evt_type = USBD_EVT_EP; | 
|  | ev->evt.ep_evt.evt_type = EP_EVT_WRITE_COMPLETE; | 
|  | ev->evt.ep_evt.ep = ep_ctx; | 
|  |  | 
|  | LOG_DBG("ctrl write complete"); | 
|  | usbd_evt_put(ev); | 
|  | usbd_work_schedule(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: { | 
|  | LOG_ERR( | 
|  | "Unexpected event (nrfx_usbd): %d, ep %d", | 
|  | p_event->data.eptransfer.status, | 
|  | p_event->data.eptransfer.ep); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (p_event->data.eptransfer.status) { | 
|  | case NRFX_USBD_EP_WAITING: { | 
|  | struct usbd_event *ev = usbd_evt_alloc(); | 
|  |  | 
|  | if (!ev) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | LOG_DBG("ctrl read request"); | 
|  |  | 
|  | ep_ctx->read_pending = true; | 
|  | ev->evt_type = USBD_EVT_EP; | 
|  | ev->evt.ep_evt.evt_type = EP_EVT_RECV_REQ; | 
|  | ev->evt.ep_evt.ep = ep_ctx; | 
|  |  | 
|  | usbd_evt_put(ev); | 
|  | usbd_work_schedule(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case NRFX_USBD_EP_OK: { | 
|  | struct nrf_usbd_ctx *ctx = get_usbd_ctx(); | 
|  | struct usbd_event *ev = usbd_evt_alloc(); | 
|  |  | 
|  | if (!ev) { | 
|  | return; | 
|  | } | 
|  | nrfx_err_t err_code; | 
|  |  | 
|  | ev->evt_type = USBD_EVT_EP; | 
|  | ev->evt.ep_evt.evt_type = EP_EVT_RECV_COMPLETE; | 
|  | ev->evt.ep_evt.ep = ep_ctx; | 
|  |  | 
|  | err_code = nrfx_usbd_ep_status_get( | 
|  | p_event->data.eptransfer.ep, &ep_ctx->buf.len); | 
|  |  | 
|  | if ((err_code != NRFX_SUCCESS) && | 
|  | (err_code != (nrfx_err_t)NRFX_USBD_EP_OK)) { | 
|  | LOG_ERR("_ep_status_get failed! Code: %d.", | 
|  | err_code); | 
|  | __ASSERT_NO_MSG(0); | 
|  | } | 
|  | LOG_DBG("ctrl read done: %d", ep_ctx->buf.len); | 
|  |  | 
|  | if (ctx->ctrl_read_len > ep_ctx->buf.len) { | 
|  | ctx->ctrl_read_len -= ep_ctx->buf.len; | 
|  | nrfx_usbd_setup_data_clear(); | 
|  | } else { | 
|  | ctx->ctrl_read_len = 0; | 
|  | } | 
|  |  | 
|  | usbd_evt_put(ev); | 
|  | usbd_work_schedule(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: { | 
|  | LOG_ERR("Unexpected event from nrfx_usbd: %d, ep %d", | 
|  | p_event->data.eptransfer.status, | 
|  | p_event->data.eptransfer.ep); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void usbd_event_transfer_data(nrfx_usbd_evt_t const *const p_event) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx = | 
|  | endpoint_ctx(p_event->data.eptransfer.ep); | 
|  |  | 
|  | if (NRF_USBD_EPIN_CHECK(p_event->data.eptransfer.ep)) { | 
|  | switch (p_event->data.eptransfer.status) { | 
|  | case NRFX_USBD_EP_OK: { | 
|  | struct usbd_event *ev = usbd_evt_alloc(); | 
|  |  | 
|  | if (!ev) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | LOG_DBG("write complete, ep %d", | 
|  | (u32_t)p_event->data.eptransfer.ep); | 
|  |  | 
|  | ep_ctx->write_in_progress = false; | 
|  | ev->evt_type = USBD_EVT_EP; | 
|  | ev->evt.ep_evt.evt_type = EP_EVT_WRITE_COMPLETE; | 
|  | ev->evt.ep_evt.ep = ep_ctx; | 
|  | usbd_evt_put(ev); | 
|  | usbd_work_schedule(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: { | 
|  | LOG_ERR("Unexpected event from nrfx_usbd: %d, ep %d", | 
|  | p_event->data.eptransfer.status, | 
|  | p_event->data.eptransfer.ep); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | switch (p_event->data.eptransfer.status) { | 
|  | case NRFX_USBD_EP_WAITING: { | 
|  | struct usbd_event *ev = usbd_evt_alloc(); | 
|  |  | 
|  | if (!ev) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | LOG_DBG("read request, ep %d", | 
|  | (u32_t)p_event->data.eptransfer.ep); | 
|  |  | 
|  | ep_ctx->read_pending = true; | 
|  | ev->evt_type = USBD_EVT_EP; | 
|  | ev->evt.ep_evt.evt_type = EP_EVT_RECV_REQ; | 
|  | ev->evt.ep_evt.ep = ep_ctx; | 
|  |  | 
|  | usbd_evt_put(ev); | 
|  | usbd_work_schedule(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case NRFX_USBD_EP_OK: { | 
|  | struct usbd_event *ev = usbd_evt_alloc(); | 
|  |  | 
|  | if (!ev) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ep_ctx->buf.len = nrf_usbd_ep_amount_get( | 
|  | p_event->data.eptransfer.ep); | 
|  |  | 
|  | LOG_DBG("read complete, ep %d, len %d", | 
|  | (u32_t)p_event->data.eptransfer.ep, | 
|  | ep_ctx->buf.len); | 
|  |  | 
|  | ev->evt_type = USBD_EVT_EP; | 
|  | ev->evt.ep_evt.evt_type = EP_EVT_RECV_COMPLETE; | 
|  | ev->evt.ep_evt.ep = ep_ctx; | 
|  |  | 
|  | usbd_evt_put(ev); | 
|  | usbd_work_schedule(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: { | 
|  | LOG_ERR("Unexpected event from nrfx_usbd: %d, ep %d", | 
|  | p_event->data.eptransfer.status, | 
|  | p_event->data.eptransfer.ep); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief nRFx USBD driver event handler function. | 
|  | */ | 
|  | static void usbd_event_handler(nrfx_usbd_evt_t const *const p_event) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  | struct usbd_event *ev; | 
|  |  | 
|  | switch (p_event->type) { | 
|  | case NRFX_USBD_EVT_SUSPEND: | 
|  | LOG_DBG("SUSPEND state detected."); | 
|  | break; | 
|  | case NRFX_USBD_EVT_RESUME: | 
|  | LOG_DBG("RESUMING from suspend."); | 
|  | break; | 
|  | case NRFX_USBD_EVT_WUREQ: | 
|  | LOG_DBG("RemoteWU initiated."); | 
|  | break; | 
|  | case NRFX_USBD_EVT_RESET: | 
|  | ev = usbd_evt_alloc(); | 
|  | if (!ev) { | 
|  | return; | 
|  | } | 
|  | ev->evt_type = USBD_EVT_RESET; | 
|  | usbd_evt_put(ev); | 
|  | usbd_work_schedule(); | 
|  | break; | 
|  | case NRFX_USBD_EVT_SOF: | 
|  | #ifdef CONFIG_USB_DEVICE_SOF | 
|  | ev = usbd_evt_alloc(); | 
|  | if (!ev) { | 
|  | return; | 
|  | } | 
|  | ev->evt_type = USBD_EVT_SOF; | 
|  | usbd_evt_put(ev); | 
|  | usbd_work_schedule(); | 
|  | #endif | 
|  | break; | 
|  |  | 
|  | case NRFX_USBD_EVT_EPTRANSFER: | 
|  | ep_ctx = endpoint_ctx(p_event->data.eptransfer.ep); | 
|  | switch (ep_ctx->cfg.type) { | 
|  | case USB_DC_EP_CONTROL: | 
|  | usbd_event_transfer_ctrl(p_event); | 
|  | break; | 
|  | case USB_DC_EP_BULK: | 
|  | case USB_DC_EP_INTERRUPT: | 
|  | usbd_event_transfer_data(p_event); | 
|  | break; | 
|  | case USB_DC_EP_ISOCHRONOUS: | 
|  | usbd_event_transfer_data(p_event); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case NRFX_USBD_EVT_SETUP: { | 
|  | nrfx_usbd_setup_t drv_setup; | 
|  |  | 
|  | nrfx_usbd_setup_get(&drv_setup); | 
|  | if ((drv_setup.bRequest != USB_BREQUEST_SETADDRESS) | 
|  | || ((drv_setup.bmRequestType & USB_BMREQUESTTYPE_TYPE_MASK) | 
|  | != USB_BMREQUESTTYPE_TYPE_STANDARD_MASK)) { | 
|  | /* SetAddress is habdled by USBD hardware. | 
|  | * No software action required. | 
|  | */ | 
|  |  | 
|  | struct nrf_usbd_ep_ctx *ep_ctx = | 
|  | endpoint_ctx(NRF_USBD_EPOUT(0)); | 
|  | ev = usbd_evt_alloc(); | 
|  | if (!ev) { | 
|  | return; | 
|  | } | 
|  | ev->evt_type = USBD_EVT_EP; | 
|  | ev->evt.ep_evt.ep = ep_ctx; | 
|  | ev->evt.ep_evt.evt_type = EP_EVT_SETUP_RECV; | 
|  | usbd_evt_put(ev); | 
|  | usbd_work_schedule(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void usbd_reinit(void) | 
|  | { | 
|  | int ret; | 
|  | nrfx_err_t err; | 
|  |  | 
|  | nrf5_power_usb_power_int_enable(false); | 
|  | nrfx_usbd_disable(); | 
|  | nrfx_usbd_uninit(); | 
|  |  | 
|  | usbd_evt_flush(); | 
|  | ret = eps_ctx_init(); | 
|  | __ASSERT_NO_MSG(ret == 0); | 
|  |  | 
|  | nrf5_power_usb_power_int_enable(true); | 
|  | err = nrfx_usbd_init(usbd_event_handler); | 
|  |  | 
|  | if (err != NRFX_SUCCESS) { | 
|  | LOG_DBG("nRF USBD driver reinit failed. Code: %d.", | 
|  | (u32_t)err); | 
|  | __ASSERT_NO_MSG(0); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Work handler */ | 
|  | static void usbd_work_handler(struct k_work *item) | 
|  | { | 
|  | struct nrf_usbd_ctx *ctx; | 
|  | struct usbd_event *ev; | 
|  |  | 
|  | ctx = CONTAINER_OF(item, struct nrf_usbd_ctx, usb_work); | 
|  |  | 
|  | while ((ev = usbd_evt_get()) != NULL) { | 
|  |  | 
|  | switch (ev->evt_type) { | 
|  | case USBD_EVT_EP: | 
|  | if (!ctx->attached) { | 
|  | LOG_ERR("EP %d event dropped (not attached).", | 
|  | (u32_t)ev->evt.ep_evt.ep->cfg.addr); | 
|  | } | 
|  | usbd_work_process_ep_events(&ev->evt.ep_evt); | 
|  | break; | 
|  | case USBD_EVT_POWER: | 
|  | usbd_work_process_pwr_events(&ev->evt.pwr_evt); | 
|  | break; | 
|  | case USBD_EVT_RESET: | 
|  | LOG_DBG("USBD reset event."); | 
|  | k_mutex_lock(&ctx->drv_lock, K_FOREVER); | 
|  | eps_ctx_init(); | 
|  | k_mutex_unlock(&ctx->drv_lock); | 
|  |  | 
|  | if (ctx->status_cb) { | 
|  | ctx->status_cb(USB_DC_RESET, NULL); | 
|  | } | 
|  | break; | 
|  | case USBD_EVT_SOF: | 
|  | if (ctx->status_cb) { | 
|  | ctx->status_cb(USB_DC_SOF, NULL); | 
|  | } | 
|  | break; | 
|  | case USBD_EVT_REINIT: { | 
|  | /* Reinitialize the peripheral after queue overflow. */ | 
|  | LOG_ERR("USBD event queue full!"); | 
|  | usbd_reinit(); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG_ERR("Unknown USBD event: %"PRId16".", ev->evt_type); | 
|  | break; | 
|  | } | 
|  | usbd_evt_free(ev); | 
|  | } | 
|  | } | 
|  |  | 
|  | int usb_dc_attach(void) | 
|  | { | 
|  | struct nrf_usbd_ctx *ctx = get_usbd_ctx(); | 
|  | nrfx_err_t err; | 
|  | int ret; | 
|  |  | 
|  | if (ctx->attached) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | k_work_init(&ctx->usb_work, usbd_work_handler); | 
|  | k_mutex_init(&ctx->drv_lock); | 
|  |  | 
|  | IRQ_CONNECT(DT_NORDIC_NRF_USBD_USBD_0_IRQ, | 
|  | DT_NORDIC_NRF_USBD_USBD_0_IRQ_PRIORITY, | 
|  | nrfx_isr, nrfx_usbd_irq_handler, 0); | 
|  |  | 
|  | err = nrfx_usbd_init(usbd_event_handler); | 
|  |  | 
|  | if (err != NRFX_SUCCESS) { | 
|  | LOG_DBG("nRF USBD driver init failed. Code: %d.", | 
|  | (u32_t)err); | 
|  | return -EIO; | 
|  | } | 
|  | nrf5_power_usb_power_int_enable(true); | 
|  |  | 
|  | ret = eps_ctx_init(); | 
|  | if (ret == 0) { | 
|  | ctx->attached = true; | 
|  | } | 
|  |  | 
|  | if (!k_fifo_is_empty(&work_queue)) { | 
|  | usbd_work_schedule(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int usb_dc_detach(void) | 
|  | { | 
|  | struct nrf_usbd_ctx *ctx = get_usbd_ctx(); | 
|  |  | 
|  | k_mutex_lock(&ctx->drv_lock, K_FOREVER); | 
|  |  | 
|  | usbd_evt_flush(); | 
|  | eps_ctx_uninit(); | 
|  |  | 
|  | nrfx_usbd_disable(); | 
|  | nrfx_usbd_uninit(); | 
|  | (void) hf_clock_enable(false, false); | 
|  | nrf5_power_usb_power_int_enable(false); | 
|  |  | 
|  | ctx->attached = false; | 
|  | k_mutex_unlock(&ctx->drv_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_reset(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!dev_attached() || !dev_ready()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | LOG_DBG("USBD Reset."); | 
|  |  | 
|  | ret = usb_dc_detach(); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = usb_dc_attach(); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_set_address(const u8_t addr) | 
|  | { | 
|  | struct nrf_usbd_ctx *ctx; | 
|  |  | 
|  | if (!dev_attached() || !dev_ready()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Nothing to do here. The USBD HW already takes care of initiating | 
|  | * STATUS stage. Just double check the address for sanity. | 
|  | */ | 
|  | __ASSERT(addr == (u8_t)NRF_USBD->USBADDR, "USB Address incorrect!"); | 
|  |  | 
|  | ctx = get_usbd_ctx(); | 
|  |  | 
|  | LOG_DBG("Address set to: %d.", addr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int usb_dc_ep_check_cap(const struct usb_dc_ep_cfg_data *const ep_cfg) | 
|  | { | 
|  | u8_t ep_idx = NRF_USBD_EP_NR_GET(ep_cfg->ep_addr); | 
|  |  | 
|  | LOG_DBG("ep %x, mps %d, type %d", ep_cfg->ep_addr, ep_cfg->ep_mps, | 
|  | ep_cfg->ep_type); | 
|  |  | 
|  | if ((ep_cfg->ep_type == USB_DC_EP_CONTROL) && ep_idx) { | 
|  | LOG_ERR("invalid endpoint configuration"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!NRF_USBD_EP_VALIDATE(ep_cfg->ep_addr)) { | 
|  | LOG_ERR("invalid endpoint index/address"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if ((ep_cfg->ep_type == USB_DC_EP_ISOCHRONOUS) && | 
|  | (!NRF_USBD_EPISO_CHECK(ep_cfg->ep_addr))) { | 
|  | LOG_WRN("invalid endpoint type"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_configure(const struct usb_dc_ep_cfg_data *const ep_cfg) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  |  | 
|  | if (!dev_attached()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * TODO: | 
|  | * For ISO endpoints, application has to use EPIN/OUT 8 | 
|  | * but right now there's no standard way of knowing the | 
|  | * ISOIN/ISOOUT endpoint number in advance to configure | 
|  | * accordingly. So either this needs to be chosen in the | 
|  | * menuconfig in application area or perhaps in device tree | 
|  | * at compile time or introduce a new API to read the endpoint | 
|  | * configuration at runtime before configuring them. | 
|  | */ | 
|  | ep_ctx = endpoint_ctx(ep_cfg->ep_addr); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ep_ctx->cfg.addr = ep_cfg->ep_addr; | 
|  | ep_ctx->cfg.type = ep_cfg->ep_type; | 
|  | ep_ctx->cfg.max_sz = ep_cfg->ep_mps; | 
|  |  | 
|  | if ((ep_cfg->ep_mps & (ep_cfg->ep_mps - 1)) != 0) { | 
|  | LOG_ERR("EP max packet size must be a power of 2."); | 
|  | return -EINVAL; | 
|  | } | 
|  | nrfx_usbd_ep_max_packet_size_set(ep_addr_to_nrfx(ep_cfg->ep_addr), | 
|  | ep_cfg->ep_mps); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_set_stall(const u8_t ep) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  |  | 
|  | if (!dev_attached() || !dev_ready()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ep_ctx = endpoint_ctx(ep); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (ep_ctx->cfg.type) { | 
|  | case USB_DC_EP_CONTROL: | 
|  | nrfx_usbd_setup_stall(); | 
|  | break; | 
|  | case USB_DC_EP_BULK: | 
|  | case USB_DC_EP_INTERRUPT: | 
|  | nrfx_usbd_ep_stall(ep_addr_to_nrfx(ep)); | 
|  | break; | 
|  | case USB_DC_EP_ISOCHRONOUS: | 
|  | LOG_ERR("STALL unsupported on ISO endpoint.s"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ep_ctx->buf.len = 0U; | 
|  | ep_ctx->buf.curr = ep_ctx->buf.data; | 
|  |  | 
|  | LOG_DBG("STALL on EP %d.", ep); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_clear_stall(const u8_t ep) | 
|  | { | 
|  |  | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  |  | 
|  | if (!dev_attached() || !dev_ready()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ep_ctx = endpoint_ctx(ep); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | nrfx_usbd_ep_stall_clear(ep_addr_to_nrfx(ep)); | 
|  | LOG_DBG("Unstall on EP %d", ep); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_halt(const u8_t ep) | 
|  | { | 
|  | return usb_dc_ep_set_stall(ep); | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_is_stalled(const u8_t ep, u8_t *const stalled) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  |  | 
|  | if (!dev_attached() || !dev_ready()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ep_ctx = endpoint_ctx(ep); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *stalled = (u8_t) nrfx_usbd_ep_stall_check(ep_addr_to_nrfx(ep)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_enable(const u8_t ep) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  |  | 
|  | if (!dev_attached()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ep_ctx = endpoint_ctx(ep); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ep_ctx->cfg.en) { | 
|  | return -EALREADY; | 
|  | } | 
|  |  | 
|  | LOG_DBG("EP enable: %d.", ep); | 
|  |  | 
|  | ep_ctx->cfg.en = true; | 
|  |  | 
|  | /* Defer the endpoint enable if USBD is not ready yet. */ | 
|  | if (dev_ready()) { | 
|  | nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_disable(const u8_t ep) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  |  | 
|  | if (!dev_attached() || !dev_ready()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ep_ctx = endpoint_ctx(ep); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!ep_ctx->cfg.en) { | 
|  | return -EALREADY; | 
|  | } | 
|  |  | 
|  | LOG_DBG("EP disable: %d.", ep); | 
|  |  | 
|  | nrfx_usbd_ep_disable(ep_addr_to_nrfx(ep)); | 
|  | ep_ctx->cfg.en = false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_flush(const u8_t ep) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  |  | 
|  | if (!dev_attached() || !dev_ready()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ep_ctx = endpoint_ctx(ep); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ep_ctx->buf.len = 0U; | 
|  | ep_ctx->buf.curr = ep_ctx->buf.data; | 
|  |  | 
|  | nrfx_usbd_transfer_out_drop(ep_addr_to_nrfx(ep)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_write(const u8_t ep, const u8_t *const data, | 
|  | const u32_t data_len, u32_t *const ret_bytes) | 
|  | { | 
|  | LOG_DBG("ep_write: ep %d, len %d", ep, data_len); | 
|  | struct nrf_usbd_ctx *ctx = get_usbd_ctx(); | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  | u32_t bytes_to_copy; | 
|  |  | 
|  | if (!dev_attached() || !dev_ready()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (NRF_USBD_EPOUT_CHECK(ep)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ep_ctx = endpoint_ctx(ep); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  |  | 
|  | k_mutex_lock(&ctx->drv_lock, K_FOREVER); | 
|  |  | 
|  | /* USBD driver does not allow scheduling multiple DMA transfers | 
|  | * for one EP at a time. Next USB transfer on this endpoint can be | 
|  | * triggered after the completion of previous one. | 
|  | */ | 
|  | if (ep_ctx->write_in_progress) { | 
|  | k_mutex_unlock(&ctx->drv_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* NRFX driver performs the fragmentation if buffer length exceeds | 
|  | * maximum packet size, however in current implementation, data is | 
|  | * copied to the internal buffer and must me fragmented here. | 
|  | * In case of fragmentation, a flag is set to prevent triggering | 
|  | * status stage which is handled by hardware, because there will be | 
|  | * another write coming. | 
|  | */ | 
|  | if (data_len > ep_ctx->cfg.max_sz) { | 
|  | bytes_to_copy = ep_ctx->cfg.max_sz; | 
|  | ep_ctx->write_fragmented = true; | 
|  | } else { | 
|  | bytes_to_copy = data_len; | 
|  | ep_ctx->write_fragmented = false; | 
|  | } | 
|  | memcpy(ep_ctx->buf.data, data, bytes_to_copy); | 
|  | ep_ctx->buf.len = bytes_to_copy; | 
|  |  | 
|  | if (ret_bytes) { | 
|  | *ret_bytes = bytes_to_copy; | 
|  | } | 
|  |  | 
|  | /* Setup stage is handled by hardware. | 
|  | * Detect the setup stage initiated by the stack | 
|  | * and perform appropriate action. | 
|  | */ | 
|  | if ((ep_ctx->cfg.type == USB_DC_EP_CONTROL) | 
|  | && (nrfx_usbd_last_setup_dir_get() != ep)) { | 
|  | nrfx_usbd_setup_clear(); | 
|  | k_mutex_unlock(&ctx->drv_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int result = 0; | 
|  | ep_ctx->write_in_progress = true; | 
|  | NRFX_USBD_TRANSFER_IN(transfer, ep_ctx->buf.data, ep_ctx->buf.len, 0); | 
|  | nrfx_err_t err = nrfx_usbd_ep_transfer(ep_addr_to_nrfx(ep), &transfer); | 
|  |  | 
|  | if (err != NRFX_SUCCESS) { | 
|  | ep_ctx->write_in_progress = false; | 
|  | result = -EIO; | 
|  | LOG_ERR("nRF USBD write error: %d.", (u32_t)err); | 
|  | } | 
|  |  | 
|  | k_mutex_unlock(&ctx->drv_lock); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_read_wait(u8_t ep, u8_t *data, u32_t max_data_len, | 
|  | u32_t *read_bytes) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  | struct nrf_usbd_ctx *ctx = get_usbd_ctx(); | 
|  | u32_t bytes_to_copy; | 
|  |  | 
|  | if (!dev_attached() || !dev_ready()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (NRF_USBD_EPIN_CHECK(ep)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!data && max_data_len) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ep_ctx = endpoint_ctx(ep); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | k_mutex_lock(&ctx->drv_lock, K_FOREVER); | 
|  |  | 
|  | bytes_to_copy = min(max_data_len, ep_ctx->buf.len); | 
|  |  | 
|  | if (!data && !max_data_len) { | 
|  | if (read_bytes) { | 
|  | *read_bytes = ep_ctx->buf.len; | 
|  | } | 
|  | k_mutex_unlock(&ctx->drv_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | memcpy(data, ep_ctx->buf.curr, bytes_to_copy); | 
|  |  | 
|  | ep_ctx->buf.curr += bytes_to_copy; | 
|  | ep_ctx->buf.len -= bytes_to_copy; | 
|  | if (read_bytes) { | 
|  | *read_bytes = bytes_to_copy; | 
|  | } | 
|  |  | 
|  | k_mutex_unlock(&ctx->drv_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_read_continue(u8_t ep) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  | struct nrf_usbd_ctx *ctx = get_usbd_ctx(); | 
|  |  | 
|  | if (!dev_attached() || !dev_ready()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (NRF_USBD_EPIN_CHECK(ep)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ep_ctx = endpoint_ctx(ep); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | k_mutex_lock(&ctx->drv_lock, K_FOREVER); | 
|  | if (!ep_ctx->buf.len) { | 
|  | ep_ctx->buf.curr = ep_ctx->buf.data; | 
|  | ep_ctx->read_complete = true; | 
|  |  | 
|  | if (ep_ctx->read_pending) { | 
|  | struct usbd_event *ev = usbd_evt_alloc(); | 
|  |  | 
|  | if (!ev) { | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ev->evt_type = USBD_EVT_EP; | 
|  | ev->evt.ep_evt.ep = ep_ctx; | 
|  | ev->evt.ep_evt.evt_type = EP_EVT_RECV_REQ; | 
|  | usbd_evt_put(ev); | 
|  | usbd_work_schedule(); | 
|  | } | 
|  | } | 
|  | k_mutex_unlock(&ctx->drv_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_read(const u8_t ep, u8_t *const data, | 
|  | const u32_t max_data_len, u32_t *const read_bytes) | 
|  | { | 
|  | LOG_DBG("ep_read: ep %d, maxlen %d", ep, max_data_len); | 
|  | int ret; | 
|  |  | 
|  | ret = usb_dc_ep_read_wait(ep, data, max_data_len, read_bytes); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!data && !max_data_len) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = usb_dc_ep_read_continue(ep); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_set_callback(const u8_t ep, const usb_dc_ep_callback cb) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  |  | 
|  | if (!dev_attached()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ep_ctx = endpoint_ctx(ep); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ep_ctx->cfg.cb = cb; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_set_status_callback(const usb_dc_status_callback cb) | 
|  | { | 
|  | get_usbd_ctx()->status_cb = cb; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int usb_dc_ep_mps(const u8_t ep) | 
|  | { | 
|  | struct nrf_usbd_ep_ctx *ep_ctx; | 
|  |  | 
|  | if (!dev_attached()) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ep_ctx = endpoint_ctx(ep); | 
|  | if (!ep_ctx) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return ep_ctx->cfg.max_sz; | 
|  | } |