blob: 2bae7961df8e3a31eac62ffad1ff1837c4862d19 [file] [log] [blame]
/*
* Copyright (c) 2020 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdio.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/timeutil.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
#include <zephyr/drivers/counter.h>
#include <nrfx_clock.h>
#define UPDATE_INTERVAL_S 10
static const struct device *const clock0 = DEVICE_DT_GET_ONE(nordic_nrf_clock);
static const struct device *const timer0 = DEVICE_DT_GET(DT_NODELABEL(timer0));
static struct timeutil_sync_config sync_config;
static uint64_t counter_ref;
static struct timeutil_sync_state sync_state;
static struct k_work_delayable sync_work;
/* Convert local time in ticks to microseconds. */
uint64_t local_to_us(uint64_t local)
{
return z_tmcvt(local, sync_config.local_Hz, USEC_PER_SEC, false,
false, false, false);
}
/* Convert HFCLK reference to microseconds. */
uint64_t ref_to_us(uint64_t ref)
{
return z_tmcvt(ref, sync_config.ref_Hz, USEC_PER_SEC, false,
false, false, false);
}
/* Format a microsecond timestamp to text as D d HH:MM:SS.SSSSSS. */
static const char *us_to_text_r(uint64_t rem, char *buf, size_t len)
{
char *bp = buf;
char *bpe = bp + len;
uint32_t us;
uint32_t s;
uint32_t min;
uint32_t hr;
uint32_t d;
us = rem % USEC_PER_SEC;
rem /= USEC_PER_SEC;
s = rem % 60;
rem /= 60;
min = rem % 60;
rem /= 60;
hr = rem % 24;
rem /= 24;
d = rem;
if (d > 0) {
bp += snprintf(bp, bpe - bp, "%u d ", d);
}
bp += snprintf(bp, bpe - bp, "%02u:%02u:%02u.%06u",
hr, min, s, us);
return buf;
}
static const char *us_to_text(uint64_t rem)
{
static char ts_buf[32];
return us_to_text_r(rem, ts_buf, sizeof(ts_buf));
}
/* Show status of various clocks */
static void show_clocks(const char *tag)
{
static const char *const lfsrc_s[] = {
#if defined(CLOCK_LFCLKSRC_SRC_LFULP)
[NRF_CLOCK_LFCLK_LFULP] = "LFULP",
#endif
[NRF_CLOCK_LFCLK_RC] = "LFRC",
[NRF_CLOCK_LFCLK_Xtal] = "LFXO",
[NRF_CLOCK_LFCLK_Synth] = "LFSYNT",
};
static const char *const hfsrc_s[] = {
[NRF_CLOCK_HFCLK_LOW_ACCURACY] = "HFINT",
[NRF_CLOCK_HFCLK_HIGH_ACCURACY] = "HFXO",
};
static const char *const clkstat_s[] = {
[CLOCK_CONTROL_STATUS_STARTING] = "STARTING",
[CLOCK_CONTROL_STATUS_OFF] = "OFF",
[CLOCK_CONTROL_STATUS_ON] = "ON",
[CLOCK_CONTROL_STATUS_UNKNOWN] = "UNKNOWN",
};
union {
unsigned int raw;
nrf_clock_lfclk_t lf;
nrf_clock_hfclk_t hf;
} src;
enum clock_control_status clkstat;
bool running;
clkstat = clock_control_get_status(clock0, CLOCK_CONTROL_NRF_SUBSYS_LF);
running = nrf_clock_is_running(NRF_CLOCK, NRF_CLOCK_DOMAIN_LFCLK,
&src.lf);
printk("%s: LFCLK[%s]: %s %s ; ", tag, clkstat_s[clkstat],
running ? "Running" : "Off", lfsrc_s[src.lf]);
clkstat = clock_control_get_status(clock0, CLOCK_CONTROL_NRF_SUBSYS_HF);
running = nrf_clock_is_running(NRF_CLOCK, NRF_CLOCK_DOMAIN_HFCLK,
&src.hf);
printk("HFCLK[%s]: %s %s\n", clkstat_s[clkstat],
running ? "Running" : "Off", hfsrc_s[src.hf]);
}
static void sync_work_handler(struct k_work *work)
{
uint32_t ctr;
int rc = counter_get_value(timer0, &ctr);
const struct timeutil_sync_instant *base = &sync_state.base;
const struct timeutil_sync_instant *latest = &sync_state.latest;
if (rc == 0) {
struct timeutil_sync_instant inst;
uint64_t ref_span_us;
counter_ref += ctr - (uint32_t)counter_ref;
inst.ref = counter_ref;
inst.local = k_uptime_ticks();
rc = timeutil_sync_state_update(&sync_state, &inst);
printf("\nTy Latest Base Span Err\n");
printf("HF %s", us_to_text(ref_to_us(inst.ref)));
if (rc > 0) {
printf(" %s", us_to_text(ref_to_us(base->ref)));
ref_span_us = ref_to_us(latest->ref - base->ref);
printf(" %s", us_to_text(ref_span_us));
}
printf("\nLF %s", us_to_text(local_to_us(inst.local)));
if (rc > 0) {
uint64_t err_us;
uint64_t local_span_us;
char err_sign = ' ';
printf(" %s", us_to_text(local_to_us(base->local)));
local_span_us = local_to_us(latest->local - base->local);
printf(" %s", us_to_text(local_span_us));
if (ref_span_us >= local_span_us) {
err_us = ref_span_us - local_span_us;
err_sign = '-';
} else {
err_us = local_span_us - ref_span_us;
}
printf(" %c%s", err_sign, us_to_text(err_us));
}
printf("\n");
if (rc > 0) {
float skew = timeutil_sync_estimate_skew(&sync_state);
/* Create a state with the current skew estimate. Use
* it to reconstruct the expected reference time from
* the latest local time, then display that time and
* its error from the latest reference time.
*/
uint64_t rec_ref;
struct timeutil_sync_state st2 = sync_state;
(void)timeutil_sync_state_set_skew(&st2, skew, NULL);
(void)timeutil_sync_ref_from_local(&st2, latest->local,
&rec_ref);
char err_sign = ' ';
uint64_t err_us;
if (rec_ref < latest->ref) {
err_sign = '-';
err_us = ref_to_us(latest->ref - rec_ref);
} else {
err_us = ref_to_us(rec_ref - latest->ref);
}
printf("RHF %s ",
us_to_text(ref_to_us(rec_ref)));
printf("%c%s\n", err_sign, us_to_text(err_us));
printf("Skew %f ; err %d ppb\n", (double)skew,
timeutil_sync_skew_to_ppb(skew));
} else if (rc < 0) {
printf("Sync update error: %d\n", rc);
}
}
(void)k_work_schedule(k_work_delayable_from_work(work),
K_SECONDS(UPDATE_INTERVAL_S));
}
void main(void)
{
uint32_t top;
int rc;
/* Grab the clock driver */
if (!device_is_ready(clock0)) {
printk("%s: device not ready.\n", clock0->name);
return;
}
show_clocks("Power-up clocks");
if (IS_ENABLED(CONFIG_APP_ENABLE_HFXO)) {
rc = clock_control_on(clock0, CLOCK_CONTROL_NRF_SUBSYS_HF);
printk("Enable HFXO got %d\n", rc);
}
/* Grab the timer. */
if (!device_is_ready(timer0)) {
printk("%s: device not ready.\n", timer0->name);
return;
}
/* Apparently there's no API to configure a frequency at
* runtime, so live with whatever we get.
*/
sync_config.ref_Hz = counter_get_frequency(timer0);
if (sync_config.ref_Hz == 0) {
printk("Timer %s has no fixed frequency\n",
timer0->name);
return;
}
top = counter_get_top_value(timer0);
if (top != UINT32_MAX) {
printk("Timer %s wraps at %u (0x%08x) not at 32 bits\n",
timer0->name, top, top);
return;
}
rc = counter_start(timer0);
printk("Start %s: %d\n", timer0->name, rc);
show_clocks("Timer-running clocks");
sync_config.local_Hz = CONFIG_SYS_CLOCK_TICKS_PER_SEC;
sync_state.cfg = &sync_config;
printf("Checking %s at %u Hz against ticks at %u Hz\n",
timer0->name, sync_config.ref_Hz, sync_config.local_Hz);
printf("Timer wraps every %u s\n",
(uint32_t)(BIT64(32) / sync_config.ref_Hz));
k_work_init_delayable(&sync_work, sync_work_handler);
rc = k_work_schedule(&sync_work, K_NO_WAIT);
printk("Started sync: %d\n", rc);
}