blob: 4c18f878b601ed3ef3267e5dfad24e72ece7632a [file] [log] [blame]
/* hci_stm32wba.c - HCI driver for stm32wba */
/*
* Copyright (c) 2022, Telink Semiconductor (Shanghai) Co., Ltd.
* Copyright (c) 2023 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/init.h>
#include <zephyr/sys/util.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/drivers/bluetooth.h>
#include <zephyr/bluetooth/addr.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/pm/policy.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/pm.h>
#ifdef CONFIG_PM_DEVICE
#include "linklayer_plat.h"
#endif /* CONFIG_PM_DEVICE */
#include <linklayer_plat_local.h>
#include <zephyr/sys/byteorder.h>
#include "blestack.h"
#include "app_conf.h"
#include "ll_sys.h"
#include "flash_driver.h"
#define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(hci_wba);
#define DT_DRV_COMPAT st_hci_stm32wba
struct hci_data {
bt_hci_recv_t recv;
};
static K_SEM_DEFINE(hci_sem, 1, 1);
#define BLE_CTRLR_STACK_BUFFER_SIZE 300
#define MBLOCK_COUNT (BLE_MBLOCKS_CALC(PREP_WRITE_LIST_SIZE, \
CFG_BLE_ATT_MTU_MAX, \
CFG_BLE_NUM_LINK) \
+ CFG_BLE_MBLOCK_COUNT_MARGIN)
#define BLE_DYN_ALLOC_SIZE \
(BLE_TOTAL_BUFFER_SIZE(CFG_BLE_NUM_LINK, MBLOCK_COUNT))
/* GATT buffer size (in bytes)*/
#define BLE_GATT_BUF_SIZE \
BLE_TOTAL_BUFFER_SIZE_GATT(CFG_BLE_NUM_GATT_ATTRIBUTES, \
CFG_BLE_NUM_GATT_SERVICES, \
CFG_BLE_ATT_VALUE_ARRAY_SIZE)
#define DIVC(x, y) (((x)+(y)-1)/(y))
#if defined(CONFIG_BT_HCI_SETUP)
/* Bluetooth LE public STM32WBA default device address (if udn not available) */
static bt_addr_t bd_addr_dflt = {{0x65, 0x43, 0x21, 0x1E, 0x08, 0x00}};
#define ACI_HAL_WRITE_CONFIG_DATA BT_OP(BT_OGF_VS, 0xFC0C)
#define HCI_CONFIG_DATA_PUBADDR_OFFSET 0
static bt_addr_t bd_addr_udn;
struct aci_set_ble_addr {
uint8_t config_offset;
uint8_t length;
uint8_t value[6];
} __packed;
#endif /* CONFIG_BT_HCI_SETUP */
#ifdef CONFIG_PM_DEVICE
/* Proprietary command to enable notification of radio events */
#define ACI_HAL_WRITE_SET_RADIO_ACTIVITY_MASK BT_OP(BT_OGF_VS, 0xFC18)
#define RADIO_ACTIVITY_MASK_ALL (0x7FFF)
#define ACI_HAL_END_OF_RADIO_ACTIVITY_EVENT (0x0004)
struct aci_set_radio_activity_mask_params {
uint16_t Radio_Activity_Mask;
} __packed;
struct bt_hci_end_radio_activity_evt {
uint8_t evt_code;
uint8_t len;
uint16_t vs_code;
uint8_t last_state;
uint8_t next_state;
uint32_t next_state_sys_time;
uint8_t last_state_slot;
uint8_t next_state_slot;
} __packed;
#endif /* CONFIG_PM_DEVICE */
static uint32_t __noinit buffer[DIVC(BLE_DYN_ALLOC_SIZE, 4)];
static uint32_t __noinit gatt_buffer[DIVC(BLE_GATT_BUF_SIZE, 4)];
extern uint8_t ll_state_busy;
#ifdef CONFIG_PM_DEVICE
static int bt_hci_stm32wba_set_radio_activity_mask(void)
{
struct net_buf *buf;
struct aci_set_radio_activity_mask_params *params;
int err;
buf = bt_hci_cmd_alloc(K_FOREVER);
if (!buf) {
return -ENOBUFS;
}
params = net_buf_add(buf, sizeof(*params));
params->Radio_Activity_Mask = RADIO_ACTIVITY_MASK_ALL;
err = bt_hci_cmd_send_sync(ACI_HAL_WRITE_SET_RADIO_ACTIVITY_MASK, buf, NULL);
return err;
}
void register_radio_event(void)
{
int64_t value_ticks;
static struct pm_policy_event radio_evt;
static bool first_event = true;
uint32_t cmd_status;
/* Flag indicating that no radio events have been scheduled */
uint32_t next_radio_event_us = 0;
/* Getting next radio event time if any */
cmd_status = ll_intf_le_get_remaining_time_for_next_event(&next_radio_event_us);
UNUSED(cmd_status);
__ASSERT(cmd_staus, "Unable to retrieve next radio event");
if (next_radio_event_us == LL_DP_SLP_NO_WAKEUP) {
/* No next radio event scheduled */
if (!first_event) {
first_event = true;
pm_policy_event_unregister(&radio_evt);
}
} else {
value_ticks = k_us_to_ticks_floor64(next_radio_event_us) + k_uptime_ticks();
if (first_event) {
pm_policy_event_register(&radio_evt, value_ticks);
first_event = false;
} else {
pm_policy_event_update(&radio_evt, value_ticks);
}
}
}
#endif /* CONFIG_PM_DEVICE */
static bool is_hci_event_discardable(const uint8_t *evt_data)
{
uint8_t evt_type = evt_data[0];
switch (evt_type) {
#if defined(CONFIG_BT_CLASSIC)
case BT_HCI_EVT_INQUIRY_RESULT_WITH_RSSI:
case BT_HCI_EVT_EXTENDED_INQUIRY_RESULT:
return true;
#endif /* CONFIG_BT_CLASSIC */
case BT_HCI_EVT_LE_META_EVENT: {
uint8_t subevt_type = evt_data[sizeof(struct bt_hci_evt_hdr)];
switch (subevt_type) {
case BT_HCI_EVT_LE_ADVERTISING_REPORT:
return true;
default:
return false;
}
}
default:
return false;
}
}
static struct net_buf *treat_evt(const uint8_t *data, size_t len)
{
bool discardable;
struct bt_hci_evt_hdr hdr;
struct net_buf *buf;
size_t buf_tailroom;
if (len < sizeof(hdr)) {
LOG_ERR("Not enough data for event header");
return NULL;
}
discardable = is_hci_event_discardable(data);
memcpy((void *)&hdr, data, sizeof(hdr));
data += sizeof(hdr);
len -= sizeof(hdr);
if (len != hdr.len) {
LOG_ERR("Event payload length is not correct.\n");
LOG_ERR("len: %d, hdr.len: %d\n", len, hdr.len);
return NULL;
}
LOG_DBG("len %u", hdr.len);
buf = bt_buf_get_evt(hdr.evt, discardable, discardable ? K_NO_WAIT : K_SECONDS(3));
if (!buf) {
if (discardable) {
LOG_DBG("Discardable buffer pool full, ignoring event");
} else {
LOG_ERR("No available event buffers!");
}
__ASSERT_NO_MSG(buf);
return buf;
}
net_buf_add_mem(buf, &hdr, sizeof(hdr));
buf_tailroom = net_buf_tailroom(buf);
if (buf_tailroom < len) {
LOG_ERR("Not enough space in buffer %zu/%zu", len, buf_tailroom);
net_buf_unref(buf);
return NULL;
}
net_buf_add_mem(buf, data, len);
return buf;
}
static struct net_buf *treat_acl(const uint8_t *data, size_t len,
const uint8_t *ext_data, size_t ext_len)
{
struct bt_hci_acl_hdr hdr;
struct net_buf *buf;
size_t buf_tailroom;
if (len < sizeof(hdr)) {
LOG_ERR("Not enough data for ACL header");
return NULL;
}
buf = bt_buf_get_rx(BT_BUF_ACL_IN, K_NO_WAIT);
if (buf) {
memcpy((void *)&hdr, data, sizeof(hdr));
data += sizeof(hdr);
len -= sizeof(hdr);
} else {
LOG_ERR("No available ACL buffers!");
return NULL;
}
if (ext_len != sys_le16_to_cpu(hdr.len)) {
LOG_ERR("ACL payload length is not correct");
net_buf_unref(buf);
return NULL;
}
net_buf_add_mem(buf, &hdr, sizeof(hdr));
buf_tailroom = net_buf_tailroom(buf);
if (buf_tailroom < len) {
LOG_ERR("Not enough space in buffer %zu/%zu", len, buf_tailroom);
net_buf_unref(buf);
return NULL;
}
LOG_DBG("ext_len %u", ext_len);
net_buf_add_mem(buf, ext_data, ext_len);
return buf;
}
static struct net_buf *treat_iso(const uint8_t *data, size_t len,
const uint8_t *ext_data, size_t ext_len)
{
struct bt_hci_iso_hdr hdr;
struct net_buf *buf;
size_t buf_tailroom;
if (len < sizeof(hdr)) {
LOG_ERR("Not enough data for ISO header");
return NULL;
}
buf = bt_buf_get_rx(BT_BUF_ISO_IN, K_NO_WAIT);
if (buf) {
memcpy((void *)&hdr, data, sizeof(hdr));
data += sizeof(hdr);
len -= sizeof(hdr);
} else {
LOG_ERR("No available ISO buffers!");
return NULL;
}
if (ext_len != bt_iso_hdr_len(sys_le16_to_cpu(hdr.len))) {
LOG_ERR("ISO payload length is not correct");
net_buf_unref(buf);
return NULL;
}
net_buf_add_mem(buf, &hdr, sizeof(hdr));
buf_tailroom = net_buf_tailroom(buf);
if (buf_tailroom < len) {
LOG_ERR("Not enough space in buffer %zu/%zu", len, buf_tailroom);
net_buf_unref(buf);
return NULL;
}
LOG_DBG("ext_len %zu", ext_len);
net_buf_add_mem(buf, ext_data, ext_len);
return buf;
}
static int receive_data(const struct device *dev, const uint8_t *data, size_t len,
const uint8_t *ext_data, size_t ext_len)
{
struct hci_data *hci = dev->data;
uint8_t pkt_indicator;
struct net_buf *buf;
int err = 0;
LOG_HEXDUMP_DBG(data, len, "host packet data:");
LOG_HEXDUMP_DBG(ext_data, ext_len, "host packet ext_data:");
pkt_indicator = *data++;
len -= sizeof(pkt_indicator);
switch (pkt_indicator) {
case BT_HCI_H4_EVT:
#ifdef CONFIG_PM_DEVICE
/* Filtering on next radio events */
const struct bt_hci_end_radio_activity_evt *evt_pckt =
(const struct bt_hci_end_radio_activity_evt *)(data);
if ((evt_pckt->evt_code == BT_HCI_EVT_VENDOR) &&
(evt_pckt->vs_code == ACI_HAL_END_OF_RADIO_ACTIVITY_EVENT)) {
register_radio_event();
return err;
}
#endif /* CONFIG_PM_DEVICE */
buf = treat_evt(data, len);
break;
case BT_HCI_H4_ACL:
buf = treat_acl(data, len + 1, ext_data, ext_len);
break;
case BT_HCI_H4_ISO:
case BT_HCI_H4_SCO:
buf = treat_iso(data, len + 1, ext_data, ext_len);
break;
default:
buf = NULL;
LOG_ERR("Unknown HCI type %u", pkt_indicator);
}
if (buf) {
hci->recv(dev, buf);
} else {
err = -ENOMEM;
ll_state_busy = 1;
}
return err;
}
uint8_t BLECB_Indication(const uint8_t *data, uint16_t length,
const uint8_t *ext_data, uint16_t ext_length)
{
const struct device *dev = DEVICE_DT_GET(DT_DRV_INST(0));
int ret = 0;
int err;
LOG_DBG("length: %d", length);
if (ext_length != 0) {
LOG_DBG("ext_length: %d", ext_length);
}
k_sem_take(&hci_sem, K_FOREVER);
err = receive_data(dev, data, (size_t)length - 1,
ext_data, (size_t)ext_length);
k_sem_give(&hci_sem);
HostStack_Process();
if (err) {
ret = 1;
}
return ret;
}
static int bt_hci_stm32wba_send(const struct device *dev, struct net_buf *buf)
{
uint16_t event_length;
uint8_t tx_buffer[BLE_CTRLR_STACK_BUFFER_SIZE];
ARG_UNUSED(dev);
k_sem_take(&hci_sem, K_FOREVER);
LOG_DBG("buf %p type %u len %u", buf, buf->data[0], buf->len);
memcpy(&tx_buffer, buf->data, buf->len);
event_length = BleStack_Request(tx_buffer);
LOG_DBG("event_length: %u", event_length);
if (event_length) {
receive_data(dev, (uint8_t *)&tx_buffer, (size_t)event_length, NULL, 0);
}
k_sem_give(&hci_sem);
net_buf_unref(buf);
return 0;
}
static int bt_ble_ctlr_init(void)
{
BleStack_init_t init_params_p = {0};
init_params_p.numAttrRecord = CFG_BLE_NUM_GATT_ATTRIBUTES;
init_params_p.numAttrServ = CFG_BLE_NUM_GATT_SERVICES;
init_params_p.attrValueArrSize = CFG_BLE_ATT_VALUE_ARRAY_SIZE;
init_params_p.prWriteListSize = CFG_BLE_ATTR_PREPARE_WRITE_VALUE_SIZE;
init_params_p.attMtu = CFG_BLE_ATT_MTU_MAX;
init_params_p.max_coc_nbr = CFG_BLE_COC_NBR_MAX;
init_params_p.max_coc_mps = CFG_BLE_COC_MPS_MAX;
init_params_p.max_coc_initiator_nbr = CFG_BLE_COC_INITIATOR_NBR_MAX;
init_params_p.numOfLinks = CFG_BLE_NUM_LINK;
init_params_p.mblockCount = CFG_BLE_MBLOCK_COUNT;
init_params_p.bleStartRamAddress = (uint8_t *)buffer;
init_params_p.total_buffer_size = BLE_DYN_ALLOC_SIZE;
init_params_p.bleStartRamAddress_GATT = (uint8_t *)gatt_buffer;
init_params_p.total_buffer_size_GATT = BLE_GATT_BUF_SIZE;
init_params_p.options = CFG_BLE_OPTIONS;
init_params_p.debug = 0U;
if (BleStack_Init(&init_params_p) != BLE_STATUS_SUCCESS) {
return -EIO;
}
return 0;
}
static int bt_hci_stm32wba_open(const struct device *dev, bt_hci_recv_t recv)
{
struct hci_data *data = dev->data;
int ret = 0;
link_layer_register_isr();
ret = bt_ble_ctlr_init();
if (ret == 0) {
data->recv = recv;
}
/* TODO. Enable Flash manager once available */
if (IS_ENABLED(CONFIG_FLASH)) {
FD_SetStatus(FD_FLASHACCESS_RFTS_BYPASS, LL_FLASH_DISABLE);
}
return ret;
}
#if defined(CONFIG_BT_HCI_SETUP)
bt_addr_t *bt_get_ble_addr(void)
{
bt_addr_t *bd_addr;
uint32_t udn;
uint32_t company_id;
uint32_t device_id;
/* Get the 64 bit Unique Device Number UID */
/* The UID is used by firmware to derive */
/* 48-bit Device Address EUI-48 */
udn = LL_FLASH_GetUDN();
if (udn != 0xFFFFFFFF) {
/* Get the ST Company ID */
company_id = LL_FLASH_GetSTCompanyID();
/* Get the STM32 Device ID */
device_id = LL_FLASH_GetDeviceID();
/*
* Public Address with the ST company ID
* bit[47:24] : 24bits (OUI) equal to the company ID
* bit[23:16] : Device ID.
* bit[15:0] : The last 16bits from the UDN
* Note: In order to use the Public Address in a final product, a dedicated
* 24bits company ID (OUI) shall be bought.
*/
bd_addr_udn.val[0] = (uint8_t)(udn & 0x000000FF);
bd_addr_udn.val[1] = (uint8_t)((udn & 0x0000FF00) >> 8);
bd_addr_udn.val[2] = (uint8_t)device_id;
bd_addr_udn.val[3] = (uint8_t)(company_id & 0x000000FF);
bd_addr_udn.val[4] = (uint8_t)((company_id & 0x0000FF00) >> 8);
bd_addr_udn.val[5] = (uint8_t)((company_id & 0x00FF0000) >> 16);
bd_addr = &bd_addr_udn;
} else {
bd_addr = &bd_addr_dflt;
}
return bd_addr;
}
static int bt_hci_stm32wba_setup(const struct device *dev,
const struct bt_hci_setup_params *params)
{
bt_addr_t *uid_addr;
struct aci_set_ble_addr *param;
struct net_buf *buf;
int err;
uid_addr = bt_get_ble_addr();
if (!uid_addr) {
return -ENOMSG;
}
buf = bt_hci_cmd_alloc(K_FOREVER);
if (!buf) {
return -ENOBUFS;
}
param = net_buf_add(buf, sizeof(*param));
param->config_offset = HCI_CONFIG_DATA_PUBADDR_OFFSET;
param->length = 6;
if (bt_addr_eq(&params->public_addr, BT_ADDR_ANY)) {
bt_addr_copy((bt_addr_t *)param->value, uid_addr);
} else {
bt_addr_copy((bt_addr_t *)param->value, &(params->public_addr));
}
err = bt_hci_cmd_send_sync(ACI_HAL_WRITE_CONFIG_DATA, buf, NULL);
if (err) {
return err;
}
#ifdef CONFIG_PM_DEVICE
err = bt_hci_stm32wba_set_radio_activity_mask();
if (err) {
return err;
}
#endif /* CONFIG_PM_DEVICE */
return err;
}
#endif /* CONFIG_BT_HCI_SETUP */
#ifdef CONFIG_PM_DEVICE
static int radio_pm_action(const struct device *dev, enum pm_device_action action)
{
switch (action) {
case PM_DEVICE_ACTION_RESUME:
LL_AHB5_GRP1_EnableClock(LL_AHB5_GRP1_PERIPH_RADIO);
#if defined(CONFIG_PM_S2RAM)
if (LL_PWR_IsActiveFlag_SB() == 1U) {
/* Put the radio in active state */
link_layer_register_isr();
}
#endif /* CONFIG_PM_S2RAM */
LINKLAYER_PLAT_NotifyWFIExit();
ll_sys_dp_slp_exit();
break;
case PM_DEVICE_ACTION_SUSPEND:
#if defined(CONFIG_PM_S2RAM)
uint32_t radio_remaining_time = 0;
enum pm_state state = pm_state_next_get(_current_cpu->id)->state;
if (state == PM_STATE_SUSPEND_TO_RAM) {
/* Checking next radio schedulet event */
uint32_t cmd_status =
ll_intf_le_get_remaining_time_for_next_event(&radio_remaining_time);
UNUSED(cmd_status);
__ASSERT(cmd_status, "Unable to retrieve next radio event");
if (radio_remaining_time == LL_DP_SLP_NO_WAKEUP) {
/* No radio event scheduled */
(void)ll_sys_dp_slp_enter(LL_DP_SLP_NO_WAKEUP);
} else if (radio_remaining_time > CFG_LPM_STDBY_WAKEUP_TIME) {
/* No event in a "near" future */
(void)ll_sys_dp_slp_enter(radio_remaining_time -
CFG_LPM_STDBY_WAKEUP_TIME);
} else {
register_radio_event();
}
}
#endif /* CONFIG_PM_S2RAM */
LINKLAYER_PLAT_NotifyWFIEnter();
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
static DEVICE_API(bt_hci, drv) = {
#if defined(CONFIG_BT_HCI_SETUP)
.setup = bt_hci_stm32wba_setup,
#endif /* CONFIG_BT_HCI_SETUP */
.open = bt_hci_stm32wba_open,
.send = bt_hci_stm32wba_send,
};
#define HCI_DEVICE_INIT(inst) \
static struct hci_data hci_data_##inst = {}; \
PM_DEVICE_DT_INST_DEFINE(inst, radio_pm_action); \
DEVICE_DT_INST_DEFINE(inst, NULL, PM_DEVICE_DT_INST_GET(inst), &hci_data_##inst, NULL, \
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &drv);
/* Only one instance supported */
HCI_DEVICE_INIT(0)