| /* |
| * Copyright (c) 2018 Nordic Semiconductor ASA |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define ADC_CONTEXT_USES_KERNEL_TIMER |
| #include "adc_context.h" |
| #include <haly/nrfy_saadc.h> |
| #include <zephyr/dt-bindings/adc/nrf-saadc-v3.h> |
| #include <zephyr/dt-bindings/adc/nrf-saadc-nrf54l.h> |
| #include <zephyr/linker/devicetree_regions.h> |
| |
| #define LOG_LEVEL CONFIG_ADC_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| #include <zephyr/irq.h> |
| LOG_MODULE_REGISTER(adc_nrfx_saadc); |
| |
| #define DT_DRV_COMPAT nordic_nrf_saadc |
| |
| #if (NRF_SAADC_HAS_AIN_AS_PIN) |
| |
| #if defined(CONFIG_NRF_PLATFORM_HALTIUM) |
| static const uint8_t saadc_psels[NRF_SAADC_AIN7 + 1] = { |
| [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1), |
| [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 1), |
| [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 1), |
| [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1), |
| [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1), |
| [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1), |
| [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1), |
| [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1), |
| }; |
| #elif defined(CONFIG_SOC_NRF54L15) |
| static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = { |
| [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1), |
| [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1), |
| [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1), |
| [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1), |
| [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(11U, 1), |
| [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(12U, 1), |
| [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(13U, 1), |
| [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(14U, 1), |
| [NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD, |
| [NRF_SAADC_AVDD] = NRF_SAADC_INPUT_AVDD, |
| [NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD, |
| }; |
| #endif |
| |
| #else |
| BUILD_ASSERT((NRF_SAADC_AIN0 == NRF_SAADC_INPUT_AIN0) && |
| (NRF_SAADC_AIN1 == NRF_SAADC_INPUT_AIN1) && |
| (NRF_SAADC_AIN2 == NRF_SAADC_INPUT_AIN2) && |
| (NRF_SAADC_AIN3 == NRF_SAADC_INPUT_AIN3) && |
| (NRF_SAADC_AIN4 == NRF_SAADC_INPUT_AIN4) && |
| (NRF_SAADC_AIN5 == NRF_SAADC_INPUT_AIN5) && |
| (NRF_SAADC_AIN6 == NRF_SAADC_INPUT_AIN6) && |
| (NRF_SAADC_AIN7 == NRF_SAADC_INPUT_AIN7) && |
| #if defined(SAADC_CH_PSELP_PSELP_VDDHDIV5) |
| (NRF_SAADC_VDDHDIV5 == NRF_SAADC_INPUT_VDDHDIV5) && |
| #endif |
| #if defined(SAADC_CH_PSELP_PSELP_VDD) |
| (NRF_SAADC_VDD == NRF_SAADC_INPUT_VDD) && |
| #endif |
| 1, |
| "Definitions from nrf-adc.h do not match those from nrf_saadc.h"); |
| #endif |
| |
| #if defined(CONFIG_NRF_PLATFORM_HALTIUM) |
| |
| /* Haltium devices always use bounce buffers in RAM */ |
| |
| #define SAADC_MEMORY_SECTION \ |
| COND_CODE_1(DT_NODE_HAS_PROP(DT_NODELABEL(adc), memory_regions), \ |
| (__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \ |
| DT_PHANDLE(DT_NODELABEL(adc), memory_regions)))))), \ |
| ()) |
| |
| static uint16_t adc_samples_buffer[SAADC_CH_NUM] SAADC_MEMORY_SECTION; |
| |
| #define ADC_BUFFER_IN_RAM |
| |
| #endif /* defined(CONFIG_NRF_PLATFORM_HALTIUM) */ |
| |
| struct driver_data { |
| struct adc_context ctx; |
| |
| uint8_t positive_inputs[SAADC_CH_NUM]; |
| uint8_t single_ended_channels; |
| |
| #if defined(ADC_BUFFER_IN_RAM) |
| void *samples_buffer; |
| void *user_buffer; |
| uint8_t active_channels; |
| #endif |
| }; |
| |
| static struct driver_data m_data = { |
| ADC_CONTEXT_INIT_TIMER(m_data, ctx), |
| ADC_CONTEXT_INIT_LOCK(m_data, ctx), |
| ADC_CONTEXT_INIT_SYNC(m_data, ctx), |
| #if defined(ADC_BUFFER_IN_RAM) |
| .samples_buffer = adc_samples_buffer, |
| #endif |
| }; |
| |
| /* Helper function to convert number of samples to the byte representation. */ |
| static uint32_t samples_to_bytes(const struct adc_sequence *sequence, uint16_t number_of_samples) |
| { |
| if (NRF_SAADC_8BIT_SAMPLE_WIDTH == 8 && sequence->resolution == 8) { |
| return number_of_samples; |
| } |
| |
| return number_of_samples * 2; |
| } |
| |
| /* Helper function to convert acquisition time to register TACQ value. */ |
| static int adc_convert_acq_time(uint16_t acquisition_time, nrf_saadc_acqtime_t *p_tacq_val) |
| { |
| int result = 0; |
| |
| #if NRF_SAADC_HAS_ACQTIME_ENUM |
| switch (acquisition_time) { |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 3): |
| *p_tacq_val = NRF_SAADC_ACQTIME_3US; |
| break; |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 5): |
| *p_tacq_val = NRF_SAADC_ACQTIME_5US; |
| break; |
| case ADC_ACQ_TIME_DEFAULT: |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10): |
| *p_tacq_val = NRF_SAADC_ACQTIME_10US; |
| break; |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 15): |
| *p_tacq_val = NRF_SAADC_ACQTIME_15US; |
| break; |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20): |
| *p_tacq_val = NRF_SAADC_ACQTIME_20US; |
| break; |
| case ADC_ACQ_TIME_MAX: |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40): |
| *p_tacq_val = NRF_SAADC_ACQTIME_40US; |
| break; |
| default: |
| result = -EINVAL; |
| } |
| #else |
| #define MINIMUM_ACQ_TIME_IN_NS 125 |
| #define DEFAULT_ACQ_TIME_IN_NS 10000 |
| |
| nrf_saadc_acqtime_t tacq = 0; |
| uint16_t acq_time = |
| (acquisition_time == ADC_ACQ_TIME_DEFAULT |
| ? DEFAULT_ACQ_TIME_IN_NS |
| : (ADC_ACQ_TIME_VALUE(acquisition_time) * |
| (ADC_ACQ_TIME_UNIT(acquisition_time) == ADC_ACQ_TIME_MICROSECONDS |
| ? 1000 |
| : 1))); |
| |
| tacq = (nrf_saadc_acqtime_t)(acq_time / MINIMUM_ACQ_TIME_IN_NS) - 1; |
| if ((tacq > NRF_SAADC_ACQTIME_MAX) || (acq_time < MINIMUM_ACQ_TIME_IN_NS)) { |
| result = -EINVAL; |
| } else { |
| *p_tacq_val = tacq; |
| } |
| #endif |
| |
| return result; |
| } |
| |
| /* Implementation of the ADC driver API function: adc_channel_setup. */ |
| static int adc_nrfx_channel_setup(const struct device *dev, |
| const struct adc_channel_cfg *channel_cfg) |
| { |
| nrf_saadc_channel_config_t config = { |
| #if NRF_SAADC_HAS_CH_CONFIG_RES |
| .resistor_p = NRF_SAADC_RESISTOR_DISABLED, |
| .resistor_n = NRF_SAADC_RESISTOR_DISABLED, |
| #endif |
| .burst = NRF_SAADC_BURST_DISABLED, |
| }; |
| uint8_t channel_id = channel_cfg->channel_id; |
| uint32_t input_negative = channel_cfg->input_negative; |
| |
| if (channel_id >= SAADC_CH_NUM) { |
| return -EINVAL; |
| } |
| |
| switch (channel_cfg->gain) { |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain1_6) |
| case ADC_GAIN_1_6: |
| config.gain = NRF_SAADC_GAIN1_6; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain1_5) |
| case ADC_GAIN_1_5: |
| config.gain = NRF_SAADC_GAIN1_5; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain1_4) || defined(SAADC_CH_CONFIG_GAIN_Gain2_8) |
| case ADC_GAIN_1_4: |
| config.gain = NRF_SAADC_GAIN1_4; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain1_3) || defined(SAADC_CH_CONFIG_GAIN_Gain2_6) |
| case ADC_GAIN_1_3: |
| config.gain = NRF_SAADC_GAIN1_3; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain2_5) |
| case ADC_GAIN_2_5: |
| config.gain = NRF_SAADC_GAIN2_5; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain1_2) || defined(SAADC_CH_CONFIG_GAIN_Gain2_4) |
| case ADC_GAIN_1_2: |
| config.gain = NRF_SAADC_GAIN1_2; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain2_3) |
| case ADC_GAIN_2_3: |
| config.gain = NRF_SAADC_GAIN2_3; |
| break; |
| #endif |
| case ADC_GAIN_1: |
| config.gain = NRF_SAADC_GAIN1; |
| break; |
| case ADC_GAIN_2: |
| config.gain = NRF_SAADC_GAIN2; |
| break; |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain4) |
| case ADC_GAIN_4: |
| config.gain = NRF_SAADC_GAIN4; |
| break; |
| #endif |
| default: |
| LOG_ERR("Selected ADC gain is not valid"); |
| return -EINVAL; |
| } |
| |
| switch (channel_cfg->reference) { |
| #if defined(SAADC_CH_CONFIG_REFSEL_Internal) |
| case ADC_REF_INTERNAL: |
| config.reference = NRF_SAADC_REFERENCE_INTERNAL; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_REFSEL_VDD1_4) |
| case ADC_REF_VDD_1_4: |
| config.reference = NRF_SAADC_REFERENCE_VDD4; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_REFSEL_External) |
| case ADC_REF_EXTERNAL0: |
| config.reference = NRF_SAADC_REFERENCE_EXTERNAL; |
| break; |
| #endif |
| default: |
| LOG_ERR("Selected ADC reference is not valid"); |
| return -EINVAL; |
| } |
| |
| int ret = adc_convert_acq_time(channel_cfg->acquisition_time, &config.acq_time); |
| |
| if (ret) { |
| LOG_ERR("Selected ADC acquisition time is not valid"); |
| return -EINVAL; |
| } |
| |
| /* Store channel mode to allow correcting negative readings in single-ended mode |
| * after ADC sequence ends. |
| */ |
| if (channel_cfg->differential) { |
| config.mode = NRF_SAADC_MODE_DIFFERENTIAL; |
| m_data.single_ended_channels &= ~BIT(channel_cfg->channel_id); |
| } else { |
| config.mode = NRF_SAADC_MODE_SINGLE_ENDED; |
| m_data.single_ended_channels |= BIT(channel_cfg->channel_id); |
| } |
| |
| #if (NRF_SAADC_HAS_AIN_AS_PIN) |
| if ((channel_cfg->input_positive >= ARRAY_SIZE(saadc_psels)) || |
| (channel_cfg->input_positive < NRF_SAADC_AIN0)) { |
| return -EINVAL; |
| } |
| |
| if (config.mode == NRF_SAADC_MODE_DIFFERENTIAL) { |
| if (input_negative > NRF_SAADC_AIN7 || |
| input_negative < NRF_SAADC_AIN0) { |
| return -EINVAL; |
| } |
| |
| input_negative = saadc_psels[input_negative]; |
| } else { |
| input_negative = NRF_SAADC_INPUT_DISABLED; |
| } |
| #endif |
| /* Store the positive input selection in a dedicated array, |
| * to get it later when the channel is selected for a sampling |
| * and to mark the channel as configured (ready to be selected). |
| */ |
| m_data.positive_inputs[channel_id] = channel_cfg->input_positive; |
| |
| nrf_saadc_channel_init(NRF_SAADC, channel_id, &config); |
| /* Keep the channel disabled in hardware (set positive input to |
| * NRF_SAADC_INPUT_DISABLED) until it is selected to be included |
| * in a sampling sequence. |
| */ |
| nrf_saadc_channel_input_set(NRF_SAADC, |
| channel_id, |
| NRF_SAADC_INPUT_DISABLED, |
| input_negative); |
| |
| return 0; |
| } |
| |
| static void adc_context_start_sampling(struct adc_context *ctx) |
| { |
| nrf_saadc_enable(NRF_SAADC); |
| |
| if (ctx->sequence.calibrate) { |
| nrf_saadc_task_trigger(NRF_SAADC, |
| NRF_SAADC_TASK_CALIBRATEOFFSET); |
| } else { |
| nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START); |
| nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE); |
| } |
| } |
| |
| static void adc_context_update_buffer_pointer(struct adc_context *ctx, |
| bool repeat) |
| { |
| ARG_UNUSED(ctx); |
| |
| if (!repeat) { |
| #if defined(ADC_BUFFER_IN_RAM) |
| m_data.user_buffer = (uint8_t *)m_data.user_buffer + |
| samples_to_bytes(&ctx->sequence, nrfy_saadc_amount_get(NRF_SAADC)); |
| #else |
| nrf_saadc_value_t *buffer = |
| (uint8_t *)nrf_saadc_buffer_pointer_get(NRF_SAADC) + |
| samples_to_bytes(&ctx->sequence, nrfy_saadc_amount_get(NRF_SAADC)); |
| nrfy_saadc_buffer_pointer_set(NRF_SAADC, buffer); |
| #endif |
| } |
| } |
| |
| static int set_resolution(const struct adc_sequence *sequence) |
| { |
| nrf_saadc_resolution_t nrf_resolution; |
| |
| switch (sequence->resolution) { |
| case 8: |
| nrf_resolution = NRF_SAADC_RESOLUTION_8BIT; |
| break; |
| case 10: |
| nrf_resolution = NRF_SAADC_RESOLUTION_10BIT; |
| break; |
| case 12: |
| nrf_resolution = NRF_SAADC_RESOLUTION_12BIT; |
| break; |
| case 14: |
| nrf_resolution = NRF_SAADC_RESOLUTION_14BIT; |
| break; |
| default: |
| LOG_ERR("ADC resolution value %d is not valid", |
| sequence->resolution); |
| return -EINVAL; |
| } |
| |
| nrf_saadc_resolution_set(NRF_SAADC, nrf_resolution); |
| return 0; |
| } |
| |
| static int set_oversampling(const struct adc_sequence *sequence, |
| uint8_t active_channels) |
| { |
| nrf_saadc_oversample_t nrf_oversampling; |
| |
| if ((active_channels > 1) && (sequence->oversampling > 0)) { |
| LOG_ERR( |
| "Oversampling is supported for single channel only"); |
| return -EINVAL; |
| } |
| |
| switch (sequence->oversampling) { |
| case 0: |
| nrf_oversampling = NRF_SAADC_OVERSAMPLE_DISABLED; |
| break; |
| case 1: |
| nrf_oversampling = NRF_SAADC_OVERSAMPLE_2X; |
| break; |
| case 2: |
| nrf_oversampling = NRF_SAADC_OVERSAMPLE_4X; |
| break; |
| case 3: |
| nrf_oversampling = NRF_SAADC_OVERSAMPLE_8X; |
| break; |
| case 4: |
| nrf_oversampling = NRF_SAADC_OVERSAMPLE_16X; |
| break; |
| case 5: |
| nrf_oversampling = NRF_SAADC_OVERSAMPLE_32X; |
| break; |
| case 6: |
| nrf_oversampling = NRF_SAADC_OVERSAMPLE_64X; |
| break; |
| case 7: |
| nrf_oversampling = NRF_SAADC_OVERSAMPLE_128X; |
| break; |
| case 8: |
| nrf_oversampling = NRF_SAADC_OVERSAMPLE_256X; |
| break; |
| default: |
| LOG_ERR("Oversampling value %d is not valid", |
| sequence->oversampling); |
| return -EINVAL; |
| } |
| |
| nrf_saadc_oversample_set(NRF_SAADC, nrf_oversampling); |
| return 0; |
| } |
| |
| static int check_buffer_size(const struct adc_sequence *sequence, |
| uint8_t active_channels) |
| { |
| size_t needed_buffer_size; |
| |
| needed_buffer_size = samples_to_bytes(sequence, active_channels); |
| |
| if (sequence->options) { |
| needed_buffer_size *= (1 + sequence->options->extra_samplings); |
| } |
| |
| if (sequence->buffer_size < needed_buffer_size) { |
| LOG_ERR("Provided buffer is too small (%u/%u)", |
| sequence->buffer_size, needed_buffer_size); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static bool has_single_ended(const struct adc_sequence *sequence) |
| { |
| return sequence->channels & m_data.single_ended_channels; |
| } |
| |
| static void correct_single_ended(const struct adc_sequence *sequence) |
| { |
| uint16_t channel_bit = BIT(0); |
| uint8_t selected_channels = sequence->channels; |
| uint8_t single_ended_channels = m_data.single_ended_channels; |
| int16_t *sample = nrf_saadc_buffer_pointer_get(NRF_SAADC); |
| |
| while (channel_bit <= single_ended_channels) { |
| if (channel_bit & selected_channels) { |
| if ((channel_bit & single_ended_channels) && (*sample < 0)) { |
| *sample = 0; |
| } |
| |
| sample++; |
| } |
| |
| channel_bit <<= 1; |
| } |
| } |
| |
| static int start_read(const struct device *dev, |
| const struct adc_sequence *sequence) |
| { |
| int error; |
| uint32_t selected_channels = sequence->channels; |
| uint8_t resolution = sequence->resolution; |
| uint8_t active_channels; |
| uint8_t channel_id; |
| |
| /* Signal an error if channel selection is invalid (no channels or |
| * a non-existing one is selected). |
| */ |
| if (!selected_channels || |
| (selected_channels & ~BIT_MASK(SAADC_CH_NUM))) { |
| LOG_ERR("Invalid selection of channels"); |
| return -EINVAL; |
| } |
| |
| active_channels = 0U; |
| |
| /* Enable only the channels selected for the pointed sequence. |
| * Disable all the rest. |
| */ |
| channel_id = 0U; |
| do { |
| if (selected_channels & BIT(channel_id)) { |
| /* Signal an error if a selected channel has not been |
| * configured yet. |
| */ |
| if (m_data.positive_inputs[channel_id] == 0U) { |
| LOG_ERR("Channel %u not configured", |
| channel_id); |
| return -EINVAL; |
| } |
| /* Signal an error if the channel is configured as |
| * single ended with a resolution which is identical |
| * to the sample bit size. The SAADC's "single ended" |
| * mode is really differential mode with the |
| * negative input tied to ground. We can therefore |
| * observe negative values if the positive input falls |
| * below ground. If the sample bitsize is larger than |
| * the resolution, we can detect negative values and |
| * correct them to 0 after the sequencen has ended. |
| */ |
| if ((m_data.single_ended_channels & BIT(channel_id)) && |
| (NRF_SAADC_8BIT_SAMPLE_WIDTH == 8 && resolution == 8)) { |
| LOG_ERR("Channel %u invalid single ended resolution", |
| channel_id); |
| return -EINVAL; |
| } |
| /* When oversampling is used, the burst mode needs to |
| * be activated. Unfortunately, this mode cannot be |
| * activated permanently in the channel setup, because |
| * then the multiple channel sampling fails (the END |
| * event is not generated) after switching to a single |
| * channel sampling and back. Thus, when oversampling |
| * is not used (hence, the multiple channel sampling is |
| * possible), the burst mode have to be deactivated. |
| */ |
| nrf_saadc_burst_set(NRF_SAADC, channel_id, |
| (sequence->oversampling != 0U ? |
| NRF_SAADC_BURST_ENABLED : |
| NRF_SAADC_BURST_DISABLED)); |
| nrf_saadc_channel_pos_input_set( |
| NRF_SAADC, |
| channel_id, |
| #if NRF_SAADC_HAS_AIN_AS_PIN |
| saadc_psels[m_data.positive_inputs[channel_id]] |
| #else |
| m_data.positive_inputs[channel_id] |
| #endif |
| ); |
| ++active_channels; |
| } else { |
| nrf_saadc_burst_set( |
| NRF_SAADC, |
| channel_id, |
| NRF_SAADC_BURST_DISABLED); |
| nrf_saadc_channel_pos_input_set( |
| NRF_SAADC, |
| channel_id, |
| NRF_SAADC_INPUT_DISABLED); |
| } |
| } while (++channel_id < SAADC_CH_NUM); |
| |
| error = set_resolution(sequence); |
| if (error) { |
| return error; |
| } |
| |
| error = set_oversampling(sequence, active_channels); |
| if (error) { |
| return error; |
| } |
| |
| error = check_buffer_size(sequence, active_channels); |
| if (error) { |
| return error; |
| } |
| |
| #if defined(ADC_BUFFER_IN_RAM) |
| m_data.user_buffer = sequence->buffer; |
| m_data.active_channels = active_channels; |
| |
| nrf_saadc_buffer_init(NRF_SAADC, |
| (nrf_saadc_value_t *)m_data.samples_buffer, |
| active_channels); |
| #else |
| nrf_saadc_buffer_init(NRF_SAADC, |
| (nrf_saadc_value_t *)sequence->buffer, |
| active_channels); |
| #endif |
| |
| adc_context_start_read(&m_data.ctx, sequence); |
| |
| return adc_context_wait_for_completion(&m_data.ctx); |
| } |
| |
| /* Implementation of the ADC driver API function: adc_read. */ |
| static int adc_nrfx_read(const struct device *dev, |
| const struct adc_sequence *sequence) |
| { |
| int error; |
| |
| adc_context_lock(&m_data.ctx, false, NULL); |
| error = start_read(dev, sequence); |
| adc_context_release(&m_data.ctx, error); |
| |
| return error; |
| } |
| |
| #ifdef CONFIG_ADC_ASYNC |
| /* Implementation of the ADC driver API function: adc_read_async. */ |
| static int adc_nrfx_read_async(const struct device *dev, |
| const struct adc_sequence *sequence, |
| struct k_poll_signal *async) |
| { |
| int error; |
| |
| adc_context_lock(&m_data.ctx, true, async); |
| error = start_read(dev, sequence); |
| adc_context_release(&m_data.ctx, error); |
| |
| return error; |
| } |
| #endif /* CONFIG_ADC_ASYNC */ |
| |
| static void saadc_irq_handler(const struct device *dev) |
| { |
| if (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_END)) { |
| nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END); |
| |
| nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP); |
| nrf_saadc_disable(NRF_SAADC); |
| |
| if (has_single_ended(&m_data.ctx.sequence)) { |
| correct_single_ended(&m_data.ctx.sequence); |
| } |
| |
| #if defined(ADC_BUFFER_IN_RAM) |
| memcpy(m_data.user_buffer, m_data.samples_buffer, |
| samples_to_bytes(&m_data.ctx.sequence, m_data.active_channels)); |
| #endif |
| |
| adc_context_on_sampling_done(&m_data.ctx, dev); |
| } else if (nrf_saadc_event_check(NRF_SAADC, |
| NRF_SAADC_EVENT_CALIBRATEDONE)) { |
| nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE); |
| |
| /* |
| * The workaround for Nordic nRF52832 anomalies 86 and |
| * 178 is an explicit STOP after CALIBRATEOFFSET |
| * before issuing START. |
| */ |
| nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP); |
| nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START); |
| nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE); |
| } |
| } |
| |
| static int init_saadc(const struct device *dev) |
| { |
| nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END); |
| nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE); |
| nrf_saadc_int_enable(NRF_SAADC, |
| NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE); |
| NRFX_IRQ_ENABLE(DT_INST_IRQN(0)); |
| |
| IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), |
| saadc_irq_handler, DEVICE_DT_INST_GET(0), 0); |
| |
| adc_context_unlock_unconditionally(&m_data.ctx); |
| |
| return 0; |
| } |
| |
| static const struct adc_driver_api adc_nrfx_driver_api = { |
| .channel_setup = adc_nrfx_channel_setup, |
| .read = adc_nrfx_read, |
| #ifdef CONFIG_ADC_ASYNC |
| .read_async = adc_nrfx_read_async, |
| #endif |
| #if defined(CONFIG_SOC_NRF54L15) |
| .ref_internal = 900, |
| #elif defined(CONFIG_NRF_PLATFORM_HALTIUM) |
| .ref_internal = 1024, |
| #else |
| .ref_internal = 600, |
| #endif |
| }; |
| |
| /* |
| * There is only one instance on supported SoCs, so inst is guaranteed |
| * to be 0 if any instance is okay. (We use adc_0 above, so the driver |
| * is relying on the numeric instance value in a way that happens to |
| * be safe.) |
| * |
| * Just in case that assumption becomes invalid in the future, we use |
| * a BUILD_ASSERT(). |
| */ |
| #define SAADC_INIT(inst) \ |
| BUILD_ASSERT((inst) == 0, \ |
| "multiple instances not supported"); \ |
| DEVICE_DT_INST_DEFINE(0, \ |
| init_saadc, \ |
| NULL, \ |
| NULL, \ |
| NULL, \ |
| POST_KERNEL, \ |
| CONFIG_ADC_INIT_PRIORITY, \ |
| &adc_nrfx_driver_api); |
| |
| DT_INST_FOREACH_STATUS_OKAY(SAADC_INIT) |