blob: 8ffbb1b5ad2687d44db20e1a66a6762122f82df0 [file] [log] [blame]
/* hci_da1469x.c - DA1469x CMAC IPC Bluetooth driver */
/*
* Copyright (c) 2023 Renesas Electronics Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/init.h>
#include <zephyr/sys/util.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/drivers/bluetooth.h>
#include <zephyr/irq.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/random/random.h>
#include <common/bt_str.h>
#include <DA1469xAB.h>
#include <mbox.h>
#include <shm.h>
#include <rand.h>
#define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(hci_da1469x);
#define DT_DRV_COMPAT renesas_bt_hci_da1469x
struct hci_data {
bt_hci_recv_t recv;
};
static K_KERNEL_STACK_DEFINE(rng_thread_stack, CONFIG_BT_RX_STACK_SIZE);
static struct k_thread rng_thread_data;
struct k_sem rng_sem;
static K_KERNEL_STACK_DEFINE(rx_thread_stack, CONFIG_BT_RX_STACK_SIZE);
static struct k_thread rx_thread_data;
static struct {
struct net_buf *buf;
struct k_fifo fifo;
uint16_t remaining;
uint16_t discard;
bool have_hdr;
bool discardable;
bool deferred;
uint8_t hdr_len;
uint8_t type;
union {
struct bt_hci_evt_hdr evt;
struct bt_hci_acl_hdr acl;
struct bt_hci_iso_hdr iso;
uint8_t hdr[4];
};
} rx = {
.fifo = Z_FIFO_INITIALIZER(rx.fifo),
};
static void h4_get_type(void)
{
/* Get packet type */
if (cmac_mbox_read(&rx.type, 1) != 1) {
LOG_WRN("Unable to read H:4 packet type");
rx.type = BT_HCI_H4_NONE;
return;
}
switch (rx.type) {
case BT_HCI_H4_EVT:
rx.remaining = sizeof(rx.evt);
rx.hdr_len = rx.remaining;
break;
case BT_HCI_H4_ACL:
rx.remaining = sizeof(rx.acl);
rx.hdr_len = rx.remaining;
break;
case BT_HCI_H4_ISO:
if (IS_ENABLED(CONFIG_BT_ISO)) {
rx.remaining = sizeof(rx.iso);
rx.hdr_len = rx.remaining;
break;
}
__fallthrough;
default:
LOG_ERR("Unknown H:4 type 0x%02x", rx.type);
rx.type = BT_HCI_H4_NONE;
}
}
static void h4_read_hdr(void)
{
int bytes_read = rx.hdr_len - rx.remaining;
int ret;
ret = cmac_mbox_read(rx.hdr + bytes_read, rx.remaining);
if (unlikely(ret < 0)) {
LOG_ERR("Unable to read from mailbox (ret %d)", ret);
} else {
rx.remaining -= ret;
}
}
static inline void get_acl_hdr(void)
{
h4_read_hdr();
if (!rx.remaining) {
struct bt_hci_acl_hdr *hdr = &rx.acl;
rx.remaining = sys_le16_to_cpu(hdr->len);
LOG_DBG("Got ACL header. Payload %u bytes", rx.remaining);
rx.have_hdr = true;
}
}
static inline void get_iso_hdr(void)
{
h4_read_hdr();
if (!rx.remaining) {
struct bt_hci_iso_hdr *hdr = &rx.iso;
rx.remaining = bt_iso_hdr_len(sys_le16_to_cpu(hdr->len));
LOG_DBG("Got ISO header. Payload %u bytes", rx.remaining);
rx.have_hdr = true;
}
}
static inline void get_evt_hdr(void)
{
struct bt_hci_evt_hdr *hdr = &rx.evt;
h4_read_hdr();
if (rx.hdr_len == sizeof(*hdr) && rx.remaining < sizeof(*hdr)) {
switch (rx.evt.evt) {
case BT_HCI_EVT_LE_META_EVENT:
rx.remaining++;
rx.hdr_len++;
break;
}
}
if (!rx.remaining) {
if (rx.evt.evt == BT_HCI_EVT_LE_META_EVENT &&
(rx.hdr[sizeof(*hdr)] == BT_HCI_EVT_LE_ADVERTISING_REPORT)) {
LOG_DBG("Marking adv report as discardable");
rx.discardable = true;
}
rx.remaining = hdr->len - (rx.hdr_len - sizeof(*hdr));
LOG_DBG("Got event header. Payload %u bytes", hdr->len);
rx.have_hdr = true;
}
}
static inline void copy_hdr(struct net_buf *buf)
{
net_buf_add_mem(buf, rx.hdr, rx.hdr_len);
}
static void reset_rx(void)
{
rx.type = BT_HCI_H4_NONE;
rx.remaining = 0U;
rx.have_hdr = false;
rx.hdr_len = 0U;
rx.discardable = false;
}
static struct net_buf *get_rx(k_timeout_t timeout)
{
LOG_DBG("type 0x%02x, evt 0x%02x", rx.type, rx.evt.evt);
switch (rx.type) {
case BT_HCI_H4_EVT:
return bt_buf_get_evt(rx.evt.evt, rx.discardable, timeout);
case BT_HCI_H4_ACL:
return bt_buf_get_rx(BT_BUF_ACL_IN, timeout);
case BT_HCI_H4_ISO:
if (IS_ENABLED(CONFIG_BT_ISO)) {
return bt_buf_get_rx(BT_BUF_ISO_IN, timeout);
}
}
return NULL;
}
static void rx_isr_start(void)
{
if (rx.deferred) {
rx.deferred = false;
NVIC_SetPendingIRQ(CMAC2SYS_IRQn);
}
irq_enable(CMAC2SYS_IRQn);
}
static void rx_isr_stop(void)
{
irq_disable(CMAC2SYS_IRQn);
}
static void rx_thread(void *p1, void *p2, void *p3)
{
const struct device *dev = p1;
struct hci_data *hci = dev->data;
struct net_buf *buf;
ARG_UNUSED(p2);
ARG_UNUSED(p3);
LOG_DBG("started");
while (1) {
LOG_DBG("rx.buf %p", rx.buf);
/* We can only do the allocation if we know the initial
* header, since Command Complete/Status events must use the
* original command buffer (if available).
*/
if (rx.have_hdr && !rx.buf) {
rx.buf = get_rx(K_FOREVER);
LOG_DBG("Got rx.buf %p", rx.buf);
if (rx.remaining > net_buf_tailroom(rx.buf)) {
LOG_ERR("Not enough space in buffer");
rx.discard = rx.remaining;
reset_rx();
} else {
copy_hdr(rx.buf);
}
}
/* Let the ISR continue receiving new packets */
rx_isr_start();
buf = k_fifo_get(&rx.fifo, K_FOREVER);
do {
rx_isr_start();
LOG_DBG("Calling bt_recv(%p)", buf);
hci->recv(dev, buf);
/* Give other threads a chance to run if the ISR
* is receiving data so fast that rx.fifo never
* or very rarely goes empty.
*/
k_yield();
rx_isr_stop();
buf = k_fifo_get(&rx.fifo, K_NO_WAIT);
} while (buf);
}
}
static size_t h4_discard(size_t len)
{
uint8_t buf[33];
int err;
err = cmac_mbox_read(buf, MIN(len, sizeof(buf)));
if (unlikely(err < 0)) {
LOG_ERR("Unable to read from mailbox (err %d)", err);
return 0;
}
return err;
}
static inline void read_payload(void)
{
struct net_buf *buf;
int read;
if (!rx.buf) {
size_t buf_tailroom;
rx.buf = get_rx(K_NO_WAIT);
if (!rx.buf) {
if (rx.discardable) {
LOG_WRN("Discarding event 0x%02x", rx.evt.evt);
rx.discard = rx.remaining;
reset_rx();
return;
}
LOG_WRN("Failed to allocate, deferring to rx_thread");
rx.deferred = true;
return;
}
LOG_DBG("Allocated rx.buf %p", rx.buf);
buf_tailroom = net_buf_tailroom(rx.buf);
if (buf_tailroom < rx.remaining) {
LOG_ERR("Not enough space in buffer %u/%zu", rx.remaining, buf_tailroom);
rx.discard = rx.remaining;
reset_rx();
return;
}
copy_hdr(rx.buf);
}
read = cmac_mbox_read(net_buf_tail(rx.buf), rx.remaining);
if (unlikely(read < 0)) {
LOG_ERR("Failed to read mailbox (err %d)", read);
return;
}
net_buf_add(rx.buf, read);
rx.remaining -= read;
LOG_DBG("got %d bytes, remaining %u", read, rx.remaining);
LOG_DBG("Payload (len %u): %s", rx.buf->len, bt_hex(rx.buf->data, rx.buf->len));
if (rx.remaining) {
return;
}
buf = rx.buf;
rx.buf = NULL;
if (rx.type == BT_HCI_H4_EVT) {
bt_buf_set_type(buf, BT_BUF_EVT);
} else {
bt_buf_set_type(buf, BT_BUF_ACL_IN);
}
reset_rx();
LOG_DBG("Putting buf %p to rx fifo", buf);
k_fifo_put(&rx.fifo, buf);
}
static inline void read_header(void)
{
switch (rx.type) {
case BT_HCI_H4_NONE:
h4_get_type();
return;
case BT_HCI_H4_EVT:
get_evt_hdr();
break;
case BT_HCI_H4_ACL:
get_acl_hdr();
break;
case BT_HCI_H4_ISO:
if (IS_ENABLED(CONFIG_BT_ISO)) {
get_iso_hdr();
break;
}
__fallthrough;
default:
CODE_UNREACHABLE;
return;
}
if (rx.have_hdr && rx.buf) {
if (rx.remaining > net_buf_tailroom(rx.buf)) {
LOG_ERR("Not enough space in buffer");
rx.discard = rx.remaining;
reset_rx();
} else {
copy_hdr(rx.buf);
}
}
}
static inline void process_rx(void)
{
LOG_DBG("remaining %u discard %u have_hdr %u rx.buf %p len %u", rx.remaining, rx.discard,
rx.have_hdr, rx.buf, rx.buf ? rx.buf->len : 0);
if (rx.discard) {
rx.discard -= h4_discard(rx.discard);
return;
}
if (rx.have_hdr) {
read_payload();
} else {
read_header();
}
}
/* Called by HAL when data in CMAC mailbox is available to read */
void cmac_read_req(void)
{
while (!rx.deferred && cmac_mbox_has_data()) {
process_rx();
}
}
/* Called by HAL when CMAC requests host to put more data in rng buffer */
void cmac_rng_req(void)
{
k_sem_give(&rng_sem);
}
static void rng_thread(void *p1, void *p2, void *p3)
{
uint32_t word;
ARG_UNUSED(p1);
ARG_UNUSED(p2);
ARG_UNUSED(p3);
while (1) {
k_sem_take(&rng_sem, K_FOREVER);
while (cmac_rand_needs_data()) {
word = sys_rand32_get();
cmac_rand_fill(&word, 1);
}
cmac_signal();
}
}
static int bt_da1469x_open(const struct device *dev, bt_hci_recv_t recv)
{
struct hci_data *hci = dev->data;
k_tid_t tid;
tid = k_thread_create(&rx_thread_data, rx_thread_stack,
K_KERNEL_STACK_SIZEOF(rx_thread_stack),
rx_thread, (void *)dev, NULL, NULL,
K_PRIO_COOP(CONFIG_BT_RX_PRIO),
0, K_NO_WAIT);
k_thread_name_set(tid, "bt_rx_thread");
k_sem_init(&rng_sem, 0, 1);
tid = k_thread_create(&rng_thread_data, rng_thread_stack,
K_KERNEL_STACK_SIZEOF(rng_thread_stack),
rng_thread, NULL, NULL, NULL,
K_PRIO_COOP(CONFIG_BT_RX_PRIO),
0, K_NO_WAIT);
k_thread_name_set(tid, "bt_rng_thread");
hci->recv = recv;
cmac_enable();
irq_enable(CMAC2SYS_IRQn);
return 0;
}
#ifdef CONFIG_BT_HCI_HOST
static int bt_da1469x_close(const struct device *dev)
{
struct hci_data *hci = dev->data;
irq_disable(CMAC2SYS_IRQn);
cmac_disable();
hci->recv = NULL;
return 0;
}
#endif /* CONFIG_BT_HCI_HOST */
static int bt_da1469x_send(const struct device *dev, struct net_buf *buf)
{
ARG_UNUSED(dev);
switch (bt_buf_get_type(buf)) {
case BT_BUF_ACL_OUT:
LOG_DBG("ACL: buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len);
net_buf_push_u8(buf, BT_HCI_H4_ACL);
break;
case BT_BUF_CMD:
LOG_DBG("CMD: buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len);
net_buf_push_u8(buf, BT_HCI_H4_CMD);
break;
default:
LOG_ERR("Unsupported type");
return -EINVAL;
}
cmac_mbox_write(buf->data, buf->len);
net_buf_unref(buf);
return 0;
}
static const struct bt_hci_driver_api drv = {
.open = bt_da1469x_open,
.close = bt_da1469x_close,
.send = bt_da1469x_send,
};
static int bt_da1469x_init(const struct device *dev)
{
irq_disable(CMAC2SYS_IRQn);
cmac_disable();
cmac_load_image();
cmac_configure_pdc();
cmac_configure_shm();
IRQ_CONNECT(CMAC2SYS_IRQn, 0, cmac_cmac2sys_isr, NULL, 0);
return 0;
}
#define HCI_DEVICE_INIT(inst) \
static struct hci_data hci_data_##inst = { \
}; \
DEVICE_DT_INST_DEFINE(inst, bt_da1469x_init, NULL, &hci_data_##inst, NULL, \
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &drv)
/* Only one instance supported right now */
HCI_DEVICE_INIT(0)