blob: e9a0433d3b591598b31e83716b2e8b76ab0bce58 [file] [log] [blame]
/* ieee802154_nrf5.c - nRF5 802.15.4 driver */
/*
* Copyright (c) 2017-2023 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nordic_nrf_ieee802154
#define LOG_MODULE_NAME ieee802154_nrf5
#if defined(CONFIG_IEEE802154_DRIVER_LOG_LEVEL)
#define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL
#else
#define LOG_LEVEL LOG_LEVEL_NONE
#endif
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/debug/stack.h>
#include <soc.h>
#if defined(CONFIG_TRUSTED_EXECUTION_NONSECURE) && defined(NRF_FICR_S)
#include <soc_secure.h>
#else
#include <hal/nrf_ficr.h>
#endif
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/debug/stack.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/net_pkt.h>
#if defined(CONFIG_NET_L2_OPENTHREAD)
#include <zephyr/net/openthread.h>
#include <zephyr/net/ieee802154_radio_openthread.h>
#endif
#include <zephyr/sys/byteorder.h>
#include <string.h>
#include <zephyr/random/random.h>
#include <zephyr/net/ieee802154_radio.h>
#include <zephyr/irq.h>
#include "ieee802154_nrf5.h"
#include "nrf_802154.h"
#include "nrf_802154_const.h"
#if defined(CONFIG_NRF_802154_SER_HOST)
#include "nrf_802154_serialization_error.h"
#endif
struct nrf5_802154_config {
void (*irq_config_func)(const struct device *dev);
};
static struct nrf5_802154_data nrf5_data;
#if defined(CONFIG_IEEE802154_RAW_MODE)
static const struct device *nrf5_dev;
#endif
#define DRX_SLOT_RX 0 /* Delayed reception window ID */
#define NSEC_PER_TEN_SYMBOLS (10 * IEEE802154_PHY_OQPSK_780_TO_2450MHZ_SYMBOL_PERIOD_NS)
#if defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE)
#if defined(CONFIG_SOC_NRF5340_CPUAPP)
#if defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)
#error "NRF_UICR->OTP is not supported to read from non-secure"
#else
#define EUI64_ADDR (NRF_UICR->OTP)
#endif /* CONFIG_TRUSTED_EXECUTION_NONSECURE */
#else
#define EUI64_ADDR (NRF_UICR->CUSTOMER)
#endif /* CONFIG_SOC_NRF5340_CPUAPP */
#endif /* CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE */
#if defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE)
#define EUI64_ADDR_HIGH CONFIG_IEEE802154_NRF5_UICR_EUI64_REG
#define EUI64_ADDR_LOW (CONFIG_IEEE802154_NRF5_UICR_EUI64_REG + 1)
#else
#define EUI64_ADDR_HIGH 0
#define EUI64_ADDR_LOW 1
#endif /* CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE */
/* Convenience defines for RADIO */
#define NRF5_802154_DATA(dev) \
((struct nrf5_802154_data * const)(dev)->data)
#define NRF5_802154_CFG(dev) \
((const struct nrf5_802154_config * const)(dev)->config)
#if CONFIG_IEEE802154_VENDOR_OUI_ENABLE
#define IEEE802154_NRF5_VENDOR_OUI CONFIG_IEEE802154_VENDOR_OUI
#else
#define IEEE802154_NRF5_VENDOR_OUI (uint32_t)0xF4CE36
#endif
static inline const struct device *nrf5_get_device(void)
{
#if defined(CONFIG_IEEE802154_RAW_MODE)
return nrf5_dev;
#else
return net_if_get_device(nrf5_data.iface);
#endif
}
static void nrf5_get_eui64(uint8_t *mac)
{
uint64_t factoryAddress;
uint32_t index = 0;
#if !defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE)
uint32_t deviceid[2];
/* Set the MAC Address Block Larger (MA-L) formerly called OUI. */
mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 16) & 0xff;
mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 8) & 0xff;
mac[index++] = IEEE802154_NRF5_VENDOR_OUI & 0xff;
#if defined(NRF54H_SERIES)
/* Can't access SICR with device id on a radio core. Use BLE.ADDR. */
deviceid[0] = NRF_FICR->BLE.ADDR[0];
deviceid[1] = NRF_FICR->BLE.ADDR[1];
#elif defined(CONFIG_TRUSTED_EXECUTION_NONSECURE) && defined(NRF_FICR_S)
soc_secure_read_deviceid(deviceid);
#else
deviceid[0] = nrf_ficr_deviceid_get(NRF_FICR, 0);
deviceid[1] = nrf_ficr_deviceid_get(NRF_FICR, 1);
#endif
factoryAddress = (uint64_t)deviceid[EUI64_ADDR_HIGH] << 32;
factoryAddress |= deviceid[EUI64_ADDR_LOW];
#else
/* Use device identifier assigned during the production. */
factoryAddress = (uint64_t)EUI64_ADDR[EUI64_ADDR_HIGH] << 32;
factoryAddress |= EUI64_ADDR[EUI64_ADDR_LOW];
#endif
memcpy(mac + index, &factoryAddress, sizeof(factoryAddress) - index);
}
static void nrf5_rx_thread(void *arg1, void *arg2, void *arg3)
{
struct nrf5_802154_data *nrf5_radio = (struct nrf5_802154_data *)arg1;
struct net_pkt *pkt;
struct nrf5_802154_rx_frame *rx_frame;
uint8_t pkt_len;
uint8_t *psdu;
ARG_UNUSED(arg2);
ARG_UNUSED(arg3);
while (1) {
pkt = NULL;
rx_frame = NULL;
LOG_DBG("Waiting for frame");
rx_frame = k_fifo_get(&nrf5_radio->rx_fifo, K_FOREVER);
__ASSERT_NO_MSG(rx_frame->psdu);
/* rx_mpdu contains length, psdu, fcs|lqi
* The last 2 bytes contain LQI or FCS, depending if
* automatic CRC handling is enabled or not, respectively.
*/
if (IS_ENABLED(CONFIG_IEEE802154_NRF5_FCS_IN_LENGTH)) {
pkt_len = rx_frame->psdu[0];
} else {
pkt_len = rx_frame->psdu[0] - IEEE802154_FCS_LENGTH;
}
#if defined(CONFIG_NET_BUF_DATA_SIZE)
__ASSERT_NO_MSG(pkt_len <= CONFIG_NET_BUF_DATA_SIZE);
#endif
LOG_DBG("Frame received");
/* Block the RX thread until net_pkt is available, so that we
* don't drop already ACKed frame in case of temporary net_pkt
* scarcity. The nRF 802154 radio driver will accumulate any
* incoming frames until it runs out of internal buffers (and
* thus stops acknowledging consecutive frames).
*/
pkt = net_pkt_rx_alloc_with_buffer(nrf5_radio->iface, pkt_len,
AF_UNSPEC, 0, K_FOREVER);
if (net_pkt_write(pkt, rx_frame->psdu + 1, pkt_len)) {
goto drop;
}
net_pkt_set_ieee802154_lqi(pkt, rx_frame->lqi);
net_pkt_set_ieee802154_rssi_dbm(pkt, rx_frame->rssi);
net_pkt_set_ieee802154_ack_fpb(pkt, rx_frame->ack_fpb);
#if defined(CONFIG_NET_PKT_TIMESTAMP)
net_pkt_set_timestamp_ns(pkt, rx_frame->time * NSEC_PER_USEC);
#endif
#if defined(CONFIG_NET_L2_OPENTHREAD)
net_pkt_set_ieee802154_ack_seb(pkt, rx_frame->ack_seb);
#endif
LOG_DBG("Caught a packet (%u) (LQI: %u)",
pkt_len, rx_frame->lqi);
if (net_recv_data(nrf5_radio->iface, pkt) < 0) {
LOG_ERR("Packet dropped by NET stack");
goto drop;
}
psdu = rx_frame->psdu;
rx_frame->psdu = NULL;
nrf_802154_buffer_free_raw(psdu);
if (LOG_LEVEL >= LOG_LEVEL_DBG) {
log_stack_usage(&nrf5_radio->rx_thread);
}
continue;
drop:
psdu = rx_frame->psdu;
rx_frame->psdu = NULL;
nrf_802154_buffer_free_raw(psdu);
net_pkt_unref(pkt);
}
}
static void nrf5_get_capabilities_at_boot(void)
{
nrf_802154_capabilities_t caps = nrf_802154_capabilities_get();
nrf5_data.capabilities =
IEEE802154_HW_FCS |
IEEE802154_HW_PROMISC |
IEEE802154_HW_FILTER |
((caps & NRF_802154_CAPABILITY_CSMA) ? IEEE802154_HW_CSMA : 0UL) |
IEEE802154_HW_TX_RX_ACK |
IEEE802154_HW_RX_TX_ACK |
IEEE802154_HW_ENERGY_SCAN |
((caps & NRF_802154_CAPABILITY_DELAYED_TX) ? IEEE802154_HW_TXTIME : 0UL) |
((caps & NRF_802154_CAPABILITY_DELAYED_RX) ? IEEE802154_HW_RXTIME : 0UL) |
IEEE802154_HW_SLEEP_TO_TX |
IEEE802154_RX_ON_WHEN_IDLE |
((caps & NRF_802154_CAPABILITY_SECURITY) ? IEEE802154_HW_TX_SEC : 0UL)
#if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA)
| IEEE802154_OPENTHREAD_HW_MULTIPLE_CCA
#endif
#if defined(CONFIG_IEEE802154_SELECTIVE_TXCHANNEL)
| IEEE802154_HW_SELECTIVE_TXCHANNEL
#endif
#if defined(CONFIG_IEEE802154_NRF5_CST_ENDPOINT)
| IEEE802154_OPENTHREAD_HW_CST
#endif
;
}
/* Radio device API */
static enum ieee802154_hw_caps nrf5_get_capabilities(const struct device *dev)
{
return nrf5_data.capabilities;
}
static int nrf5_cca(const struct device *dev)
{
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
if (!nrf_802154_cca()) {
LOG_DBG("CCA failed");
return -EBUSY;
}
/* The nRF driver guarantees that a callback will be called once
* the CCA function is done, thus unlocking the semaphore.
*/
k_sem_take(&nrf5_radio->cca_wait, K_FOREVER);
LOG_DBG("Channel free? %d", nrf5_radio->channel_free);
return nrf5_radio->channel_free ? 0 : -EBUSY;
}
static int nrf5_set_channel(const struct device *dev, uint16_t channel)
{
ARG_UNUSED(dev);
LOG_DBG("%u", channel);
if (channel < 11 || channel > 26) {
return channel < 11 ? -ENOTSUP : -EINVAL;
}
nrf_802154_channel_set(channel);
return 0;
}
static int nrf5_energy_scan_start(const struct device *dev,
uint16_t duration,
energy_scan_done_cb_t done_cb)
{
int err = 0;
ARG_UNUSED(dev);
if (nrf5_data.energy_scan_done == NULL) {
nrf5_data.energy_scan_done = done_cb;
if (nrf_802154_energy_detection(duration * 1000) == false) {
nrf5_data.energy_scan_done = NULL;
err = -EBUSY;
}
} else {
err = -EALREADY;
}
return err;
}
static int nrf5_set_pan_id(const struct device *dev, uint16_t pan_id)
{
uint8_t pan_id_le[2];
ARG_UNUSED(dev);
sys_put_le16(pan_id, pan_id_le);
nrf_802154_pan_id_set(pan_id_le);
LOG_DBG("0x%x", pan_id);
return 0;
}
static int nrf5_set_short_addr(const struct device *dev, uint16_t short_addr)
{
uint8_t short_addr_le[2];
ARG_UNUSED(dev);
sys_put_le16(short_addr, short_addr_le);
nrf_802154_short_address_set(short_addr_le);
LOG_DBG("0x%x", short_addr);
return 0;
}
static int nrf5_set_ieee_addr(const struct device *dev,
const uint8_t *ieee_addr)
{
ARG_UNUSED(dev);
LOG_DBG("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4],
ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]);
nrf_802154_extended_address_set(ieee_addr);
return 0;
}
static int nrf5_filter(const struct device *dev, bool set,
enum ieee802154_filter_type type,
const struct ieee802154_filter *filter)
{
LOG_DBG("Applying filter %u", type);
if (!set) {
return -ENOTSUP;
}
if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) {
return nrf5_set_ieee_addr(dev, filter->ieee_addr);
} else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) {
return nrf5_set_short_addr(dev, filter->short_addr);
} else if (type == IEEE802154_FILTER_TYPE_PAN_ID) {
return nrf5_set_pan_id(dev, filter->pan_id);
}
return -ENOTSUP;
}
static int nrf5_set_txpower(const struct device *dev, int16_t dbm)
{
ARG_UNUSED(dev);
LOG_DBG("%d", dbm);
nrf5_data.txpwr = dbm;
return 0;
}
static int handle_ack(struct nrf5_802154_data *nrf5_radio)
{
uint8_t ack_len;
struct net_pkt *ack_pkt;
int err = 0;
#if defined(CONFIG_NET_PKT_TIMESTAMP)
if (nrf5_radio->ack_frame.time == NRF_802154_NO_TIMESTAMP) {
/* Ack timestamp is invalid and cannot be used by the upper layer.
* Report the transmission as failed as if the Ack was not received at all.
*/
LOG_WRN("Invalid ACK timestamp.");
err = -ENOMSG;
goto free_nrf_ack;
}
#endif
if (IS_ENABLED(CONFIG_IEEE802154_NRF5_FCS_IN_LENGTH)) {
ack_len = nrf5_radio->ack_frame.psdu[0];
} else {
ack_len = nrf5_radio->ack_frame.psdu[0] - IEEE802154_FCS_LENGTH;
}
ack_pkt = net_pkt_rx_alloc_with_buffer(nrf5_radio->iface, ack_len,
AF_UNSPEC, 0, K_NO_WAIT);
if (!ack_pkt) {
LOG_ERR("No free packet available.");
err = -ENOMEM;
goto free_nrf_ack;
}
/* Upper layers expect the frame to start at the MAC header, skip the
* PHY header (1 byte).
*/
if (net_pkt_write(ack_pkt, nrf5_radio->ack_frame.psdu + 1,
ack_len) < 0) {
LOG_ERR("Failed to write to a packet.");
err = -ENOMEM;
goto free_net_ack;
}
net_pkt_set_ieee802154_lqi(ack_pkt, nrf5_radio->ack_frame.lqi);
net_pkt_set_ieee802154_rssi_dbm(ack_pkt, nrf5_radio->ack_frame.rssi);
#if defined(CONFIG_NET_PKT_TIMESTAMP)
net_pkt_set_timestamp_ns(ack_pkt, nrf5_radio->ack_frame.time * NSEC_PER_USEC);
#endif
net_pkt_cursor_init(ack_pkt);
if (ieee802154_handle_ack(nrf5_radio->iface, ack_pkt) != NET_OK) {
LOG_INF("ACK packet not handled - releasing.");
}
free_net_ack:
net_pkt_unref(ack_pkt);
free_nrf_ack:
nrf_802154_buffer_free_raw(nrf5_radio->ack_frame.psdu);
nrf5_radio->ack_frame.psdu = NULL;
return err;
}
static void nrf5_tx_started(const struct device *dev,
struct net_pkt *pkt,
struct net_buf *frag)
{
ARG_UNUSED(pkt);
if (nrf5_data.event_handler) {
nrf5_data.event_handler(dev, IEEE802154_EVENT_TX_STARTED,
(void *)frag);
}
}
static bool nrf5_tx_immediate(struct net_pkt *pkt, uint8_t *payload, bool cca)
{
nrf_802154_transmit_metadata_t metadata = {
.frame_props = {
.is_secured = net_pkt_ieee802154_frame_secured(pkt),
.dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt),
},
.cca = cca,
.tx_power = {
.use_metadata_value = true,
.power = nrf5_data.txpwr,
},
};
return nrf_802154_transmit_raw(payload, &metadata);
}
#if NRF_802154_CSMA_CA_ENABLED
static bool nrf5_tx_csma_ca(struct net_pkt *pkt, uint8_t *payload)
{
nrf_802154_transmit_csma_ca_metadata_t metadata = {
.frame_props = {
.is_secured = net_pkt_ieee802154_frame_secured(pkt),
.dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt),
},
.tx_power = {
.use_metadata_value = true,
.power = nrf5_data.txpwr,
},
};
return nrf_802154_transmit_csma_ca_raw(payload, &metadata);
}
#endif
#if defined(CONFIG_NET_PKT_TXTIME)
static bool nrf5_tx_at(struct nrf5_802154_data *nrf5_radio, struct net_pkt *pkt,
uint8_t *payload, enum ieee802154_tx_mode mode)
{
bool cca = false;
#if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA)
uint8_t max_extra_cca_attempts = 0;
#endif
switch (mode) {
case IEEE802154_TX_MODE_TXTIME:
break;
case IEEE802154_TX_MODE_TXTIME_CCA:
cca = true;
break;
#if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA)
case IEEE802154_OPENTHREAD_TX_MODE_TXTIME_MULTIPLE_CCA:
cca = true;
max_extra_cca_attempts = nrf5_data.max_extra_cca_attempts;
break;
#endif
break;
default:
__ASSERT_NO_MSG(false);
return false;
}
nrf_802154_transmit_at_metadata_t metadata = {
.frame_props = {
.is_secured = net_pkt_ieee802154_frame_secured(pkt),
.dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt),
},
.cca = cca,
#if defined(CONFIG_IEEE802154_SELECTIVE_TXCHANNEL)
.channel = net_pkt_ieee802154_txchannel(pkt),
#else
.channel = nrf_802154_channel_get(),
#endif
.tx_power = {
.use_metadata_value = true,
.power = nrf5_data.txpwr,
},
#if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA)
.extra_cca_attempts = max_extra_cca_attempts,
#endif
};
/* The timestamp points to the start of PHR but `nrf_802154_transmit_raw_at`
* expects a timestamp pointing to start of SHR.
*/
uint64_t tx_at = nrf_802154_timestamp_phr_to_shr_convert(
net_pkt_timestamp_ns(pkt) / NSEC_PER_USEC);
return nrf_802154_transmit_raw_at(payload, tx_at, &metadata);
}
#endif /* CONFIG_NET_PKT_TXTIME */
static int nrf5_tx(const struct device *dev,
enum ieee802154_tx_mode mode,
struct net_pkt *pkt,
struct net_buf *frag)
{
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
uint8_t payload_len = frag->len;
uint8_t *payload = frag->data;
bool ret = true;
if (payload_len > IEEE802154_MTU) {
LOG_ERR("Payload too large: %d", payload_len);
return -EMSGSIZE;
}
LOG_DBG("%p (%u)", payload, payload_len);
nrf5_radio->tx_psdu[0] = payload_len + IEEE802154_FCS_LENGTH;
memcpy(nrf5_radio->tx_psdu + 1, payload, payload_len);
/* Reset semaphore in case ACK was received after timeout */
k_sem_reset(&nrf5_radio->tx_wait);
switch (mode) {
case IEEE802154_TX_MODE_DIRECT:
case IEEE802154_TX_MODE_CCA:
ret = nrf5_tx_immediate(pkt, nrf5_radio->tx_psdu,
mode == IEEE802154_TX_MODE_CCA);
break;
#if NRF_802154_CSMA_CA_ENABLED
case IEEE802154_TX_MODE_CSMA_CA:
ret = nrf5_tx_csma_ca(pkt, nrf5_radio->tx_psdu);
break;
#endif
#if defined(CONFIG_NET_PKT_TXTIME)
case IEEE802154_TX_MODE_TXTIME:
case IEEE802154_TX_MODE_TXTIME_CCA:
#if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA)
case IEEE802154_OPENTHREAD_TX_MODE_TXTIME_MULTIPLE_CCA:
#endif
__ASSERT_NO_MSG(pkt);
ret = nrf5_tx_at(nrf5_radio, pkt, nrf5_radio->tx_psdu, mode);
break;
#endif /* CONFIG_NET_PKT_TXTIME */
default:
NET_ERR("TX mode %d not supported", mode);
return -ENOTSUP;
}
if (!ret) {
LOG_ERR("Cannot send frame");
return -EIO;
}
nrf5_tx_started(dev, pkt, frag);
LOG_DBG("Sending frame (ch:%d, txpower:%d)",
nrf_802154_channel_get(), nrf_802154_tx_power_get());
/* Wait for the callback from the radio driver. */
k_sem_take(&nrf5_radio->tx_wait, K_FOREVER);
LOG_DBG("Result: %d", nrf5_data.tx_result);
#if defined(CONFIG_NRF_802154_ENCRYPTION)
/*
* When frame encryption by the radio driver is enabled, the frame stored in
* the tx_psdu buffer is:
* 1) authenticated and encrypted in place which causes that after an unsuccessful
* TX attempt, this frame must be propagated back to the upper layer for retransmission.
* The upper layer must ensure that the exact same secured frame is used for
* retransmission
* 2) frame counters are updated in place and for keeping the link frame counter up to date,
* this information must be propagated back to the upper layer
*/
memcpy(payload, nrf5_radio->tx_psdu + 1, payload_len);
#endif
net_pkt_set_ieee802154_frame_secured(pkt, nrf5_radio->tx_frame_is_secured);
net_pkt_set_ieee802154_mac_hdr_rdy(pkt, nrf5_radio->tx_frame_mac_hdr_rdy);
switch (nrf5_radio->tx_result) {
case NRF_802154_TX_ERROR_NONE:
if (nrf5_radio->ack_frame.psdu == NULL) {
/* No ACK was requested. */
return 0;
}
/* Handle ACK packet. */
return handle_ack(nrf5_radio);
case NRF_802154_TX_ERROR_NO_MEM:
return -ENOBUFS;
case NRF_802154_TX_ERROR_BUSY_CHANNEL:
return -EBUSY;
case NRF_802154_TX_ERROR_INVALID_ACK:
case NRF_802154_TX_ERROR_NO_ACK:
return -ENOMSG;
case NRF_802154_TX_ERROR_ABORTED:
case NRF_802154_TX_ERROR_TIMESLOT_DENIED:
case NRF_802154_TX_ERROR_TIMESLOT_ENDED:
default:
return -EIO;
}
}
static net_time_t nrf5_get_time(const struct device *dev)
{
ARG_UNUSED(dev);
return (net_time_t)nrf_802154_time_get() * NSEC_PER_USEC;
}
static uint8_t nrf5_get_acc(const struct device *dev)
{
ARG_UNUSED(dev);
return CONFIG_IEEE802154_NRF5_DELAY_TRX_ACC;
}
static int nrf5_start(const struct device *dev)
{
ARG_UNUSED(dev);
nrf_802154_tx_power_set(nrf5_data.txpwr);
if (!nrf_802154_receive()) {
LOG_ERR("Failed to enter receive state");
return -EIO;
}
LOG_DBG("nRF5 802154 radio started (channel: %d)",
nrf_802154_channel_get());
return 0;
}
static int nrf5_stop(const struct device *dev)
{
#if defined(CONFIG_IEEE802154_CSL_ENDPOINT)
if (nrf_802154_sleep_if_idle() != NRF_802154_SLEEP_ERROR_NONE) {
if (nrf5_data.event_handler) {
nrf5_data.event_handler(dev, IEEE802154_EVENT_RX_OFF, NULL);
} else {
LOG_WRN("Transition to radio sleep cannot be handled.");
}
Z_SPIN_DELAY(1);
return 0;
}
#else
ARG_UNUSED(dev);
if (!nrf_802154_sleep()) {
LOG_ERR("Error while stopping radio");
return -EIO;
}
#endif
LOG_DBG("nRF5 802154 radio stopped");
return 0;
}
#if defined(CONFIG_NRF_802154_CARRIER_FUNCTIONS)
static int nrf5_continuous_carrier(const struct device *dev)
{
ARG_UNUSED(dev);
nrf_802154_tx_power_set(nrf5_data.txpwr);
if (!nrf_802154_continuous_carrier()) {
LOG_ERR("Failed to enter continuous carrier state");
return -EIO;
}
LOG_DBG("Continuous carrier wave transmission started (channel: %d)",
nrf_802154_channel_get());
return 0;
}
#endif
#if !defined(CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT)
static void nrf5_radio_irq(const void *arg)
{
ARG_UNUSED(arg);
nrf_802154_radio_irq_handler();
}
#endif
static void nrf5_irq_config(const struct device *dev)
{
ARG_UNUSED(dev);
#if !defined(CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT)
IRQ_CONNECT(DT_IRQN(DT_NODELABEL(radio)), NRF_802154_IRQ_PRIORITY, nrf5_radio_irq, NULL, 0);
irq_enable(DT_IRQN(DT_NODELABEL(radio)));
#endif
}
static int nrf5_init(const struct device *dev)
{
const struct nrf5_802154_config *nrf5_radio_cfg = NRF5_802154_CFG(dev);
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
#if defined(CONFIG_IEEE802154_RAW_MODE)
nrf5_dev = dev;
#endif
k_fifo_init(&nrf5_radio->rx_fifo);
k_sem_init(&nrf5_radio->tx_wait, 0, 1);
k_sem_init(&nrf5_radio->cca_wait, 0, 1);
nrf_802154_init();
nrf5_get_capabilities_at_boot();
nrf5_radio->rx_on_when_idle = true;
nrf5_radio_cfg->irq_config_func(dev);
k_thread_create(&nrf5_radio->rx_thread, nrf5_radio->rx_stack,
CONFIG_IEEE802154_NRF5_RX_STACK_SIZE,
nrf5_rx_thread, nrf5_radio, NULL, NULL,
K_PRIO_COOP(2), 0, K_NO_WAIT);
k_thread_name_set(&nrf5_radio->rx_thread, "nrf5_rx");
LOG_INF("nRF5 802154 radio initialized");
return 0;
}
static void nrf5_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
nrf5_get_eui64(nrf5_radio->mac);
net_if_set_link_addr(iface, nrf5_radio->mac, sizeof(nrf5_radio->mac),
NET_LINK_IEEE802154);
nrf5_radio->iface = iface;
ieee802154_init(iface);
}
#if defined(CONFIG_NRF_802154_ENCRYPTION)
static void nrf5_config_mac_keys(struct ieee802154_key *mac_keys)
{
nrf_802154_security_key_remove_all();
for (uint8_t i = 0; mac_keys->key_value
&& i < NRF_802154_SECURITY_KEY_STORAGE_SIZE; mac_keys++, i++) {
nrf_802154_key_t key = {
.value.p_cleartext_key = mac_keys->key_value,
.id.mode = mac_keys->key_id_mode,
.id.p_key_id = mac_keys->key_id,
.type = NRF_802154_KEY_CLEARTEXT,
.frame_counter = 0,
.use_global_frame_counter = !(mac_keys->frame_counter_per_key),
};
__ASSERT_EVAL((void)nrf_802154_security_key_store(&key),
nrf_802154_security_error_t err = nrf_802154_security_key_store(&key),
err == NRF_802154_SECURITY_ERROR_NONE ||
err == NRF_802154_SECURITY_ERROR_ALREADY_PRESENT,
"Storing key failed, err: %d", err);
};
}
#endif /* CONFIG_NRF_802154_ENCRYPTION */
static int nrf5_configure(const struct device *dev,
enum ieee802154_config_type type,
const struct ieee802154_config *config)
{
ARG_UNUSED(dev);
switch (type) {
case IEEE802154_CONFIG_AUTO_ACK_FPB:
if (config->auto_ack_fpb.enabled) {
switch (config->auto_ack_fpb.mode) {
case IEEE802154_FPB_ADDR_MATCH_THREAD:
nrf_802154_src_addr_matching_method_set(
NRF_802154_SRC_ADDR_MATCH_THREAD);
break;
case IEEE802154_FPB_ADDR_MATCH_ZIGBEE:
nrf_802154_src_addr_matching_method_set(
NRF_802154_SRC_ADDR_MATCH_ZIGBEE);
break;
default:
return -EINVAL;
}
}
nrf_802154_auto_pending_bit_set(config->auto_ack_fpb.enabled);
break;
case IEEE802154_CONFIG_ACK_FPB:
if (config->ack_fpb.enabled) {
if (!nrf_802154_pending_bit_for_addr_set(
config->ack_fpb.addr,
config->ack_fpb.extended)) {
return -ENOMEM;
}
break;
}
if (config->ack_fpb.addr != NULL) {
if (!nrf_802154_pending_bit_for_addr_clear(
config->ack_fpb.addr,
config->ack_fpb.extended)) {
return -ENOENT;
}
} else {
nrf_802154_pending_bit_for_addr_reset(
config->ack_fpb.extended);
}
break;
case IEEE802154_CONFIG_PAN_COORDINATOR:
nrf_802154_pan_coord_set(config->pan_coordinator);
break;
case IEEE802154_CONFIG_PROMISCUOUS:
nrf_802154_promiscuous_set(config->promiscuous);
break;
case IEEE802154_CONFIG_EVENT_HANDLER:
nrf5_data.event_handler = config->event_handler;
break;
#if defined(CONFIG_NRF_802154_ENCRYPTION)
case IEEE802154_CONFIG_MAC_KEYS:
nrf5_config_mac_keys(config->mac_keys);
break;
case IEEE802154_CONFIG_FRAME_COUNTER:
nrf_802154_security_global_frame_counter_set(config->frame_counter);
break;
case IEEE802154_CONFIG_FRAME_COUNTER_IF_LARGER:
nrf_802154_security_global_frame_counter_set_if_larger(config->frame_counter);
break;
#endif /* CONFIG_NRF_802154_ENCRYPTION */
case IEEE802154_CONFIG_ENH_ACK_HEADER_IE: {
uint8_t ext_addr_le[EXTENDED_ADDRESS_SIZE];
uint8_t short_addr_le[SHORT_ADDRESS_SIZE];
uint8_t element_id;
bool valid_vendor_specific_ie = false;
if (config->ack_ie.purge_ie) {
nrf_802154_ack_data_remove_all(false, NRF_802154_ACK_DATA_IE);
nrf_802154_ack_data_remove_all(true, NRF_802154_ACK_DATA_IE);
break;
}
if (config->ack_ie.short_addr == IEEE802154_BROADCAST_ADDRESS ||
config->ack_ie.ext_addr == NULL) {
return -ENOTSUP;
}
sys_put_le16(config->ack_ie.short_addr, short_addr_le);
sys_memcpy_swap(ext_addr_le, config->ack_ie.ext_addr, EXTENDED_ADDRESS_SIZE);
if (config->ack_ie.header_ie == NULL || config->ack_ie.header_ie->length == 0) {
if (config->ack_ie.short_addr != IEEE802154_NO_SHORT_ADDRESS_ASSIGNED) {
nrf_802154_ack_data_clear(short_addr_le, false,
NRF_802154_ACK_DATA_IE);
}
nrf_802154_ack_data_clear(ext_addr_le, true, NRF_802154_ACK_DATA_IE);
} else {
element_id = ieee802154_header_ie_get_element_id(config->ack_ie.header_ie);
#if defined(CONFIG_NET_L2_OPENTHREAD)
uint8_t vendor_oui_le[IEEE802154_OPENTHREAD_VENDOR_OUI_LEN] =
IEEE802154_OPENTHREAD_THREAD_IE_VENDOR_OUI;
if (element_id == IEEE802154_HEADER_IE_ELEMENT_ID_VENDOR_SPECIFIC_IE &&
memcmp(config->ack_ie.header_ie->content.vendor_specific.vendor_oui,
vendor_oui_le, sizeof(vendor_oui_le)) == 0) {
valid_vendor_specific_ie = true;
}
#endif
if (element_id != IEEE802154_HEADER_IE_ELEMENT_ID_CSL_IE &&
!valid_vendor_specific_ie) {
return -ENOTSUP;
}
if (config->ack_ie.short_addr != IEEE802154_NO_SHORT_ADDRESS_ASSIGNED) {
nrf_802154_ack_data_set(
short_addr_le, false, config->ack_ie.header_ie,
config->ack_ie.header_ie->length +
IEEE802154_HEADER_IE_HEADER_LENGTH,
NRF_802154_ACK_DATA_IE);
}
nrf_802154_ack_data_set(ext_addr_le, true, config->ack_ie.header_ie,
config->ack_ie.header_ie->length +
IEEE802154_HEADER_IE_HEADER_LENGTH,
NRF_802154_ACK_DATA_IE);
}
} break;
#if defined(CONFIG_IEEE802154_CSL_ENDPOINT)
case IEEE802154_CONFIG_EXPECTED_RX_TIME: {
#if defined(CONFIG_NRF_802154_SER_HOST)
net_time_t period_ns = nrf5_data.csl_period * NSEC_PER_TEN_SYMBOLS;
bool changed = (config->expected_rx_time - nrf5_data.csl_rx_time) % period_ns;
nrf5_data.csl_rx_time = config->expected_rx_time;
if (changed)
#endif /* CONFIG_NRF_802154_SER_HOST */
{
nrf_802154_csl_writer_anchor_time_set(
nrf_802154_timestamp_phr_to_mhr_convert(config->expected_rx_time /
NSEC_PER_USEC));
}
} break;
case IEEE802154_CONFIG_RX_SLOT: {
/* Note that even if the nrf_802154_receive_at function is not called in time
* (for example due to the call being blocked by higher priority threads) and
* the delayed reception window is not scheduled, the CSL phase will still be
* calculated as if the following reception windows were at times
* anchor_time + n * csl_period. The previously set
* anchor_time will be used for calculations.
*/
nrf_802154_receive_at(config->rx_slot.start / NSEC_PER_USEC,
config->rx_slot.duration / NSEC_PER_USEC,
config->rx_slot.channel, DRX_SLOT_RX);
} break;
case IEEE802154_CONFIG_CSL_PERIOD: {
nrf_802154_csl_writer_period_set(config->csl_period);
#if defined(CONFIG_NRF_802154_SER_HOST)
nrf5_data.csl_period = config->csl_period;
#endif
} break;
#endif /* CONFIG_IEEE802154_CSL_ENDPOINT */
#if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA)
case IEEE802154_OPENTHREAD_CONFIG_MAX_EXTRA_CCA_ATTEMPTS:
nrf5_data.max_extra_cca_attempts =
((const struct ieee802154_openthread_config *)config)
->max_extra_cca_attempts;
break;
#endif /* CONFIG_IEEE802154_NRF5_MULTIPLE_CCA */
case IEEE802154_CONFIG_RX_ON_WHEN_IDLE:
nrf_802154_rx_on_when_idle_set(config->rx_on_when_idle);
nrf5_data.rx_on_when_idle = config->rx_on_when_idle;
if (config->rx_on_when_idle == false) {
(void)nrf_802154_sleep_if_idle();
}
break;
#if defined(CONFIG_IEEE802154_NRF5_CST_ENDPOINT)
case IEEE802154_OPENTHREAD_CONFIG_CST_PERIOD:
nrf_802154_cst_writer_period_set(config->cst_period);
break;
case IEEE802154_OPENTHREAD_CONFIG_EXPECTED_TX_TIME:
nrf_802154_cst_writer_anchor_time_set(nrf_802154_timestamp_phr_to_mhr_convert(
config->expected_tx_time / NSEC_PER_USEC));
break;
#endif /* CONFIG_IEEE802154_NRF5_CST_ENDPOINT */
default:
return -EINVAL;
}
return 0;
}
/* driver-allocated attribute memory - constant across all driver instances */
IEEE802154_DEFINE_PHY_SUPPORTED_CHANNELS(drv_attr, 11, 26);
static int nrf5_attr_get(const struct device *dev,
enum ieee802154_attr attr,
struct ieee802154_attr_value *value)
{
ARG_UNUSED(dev);
if (ieee802154_attr_get_channel_page_and_range(
attr, IEEE802154_ATTR_PHY_CHANNEL_PAGE_ZERO_OQPSK_2450_BPSK_868_915,
&drv_attr.phy_supported_channels, value) == 0) {
return 0;
}
switch ((uint32_t)attr) {
#if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA)
/* TODO: t_recca and t_ccatx should be provided by the public API of the
* nRF 802.15.4 Radio Driver.
*/
case IEEE802154_OPENTHREAD_ATTR_T_RECCA:
((struct ieee802154_openthread_attr_value *)value)->t_recca = 0;
break;
case IEEE802154_OPENTHREAD_ATTR_T_CCATX:
((struct ieee802154_openthread_attr_value *)value)->t_ccatx = 20;
break;
#endif
default:
return -ENOENT;
}
return 0;
}
/* nRF5 radio driver callbacks */
void nrf_802154_received_timestamp_raw(uint8_t *data, int8_t power, uint8_t lqi, uint64_t time)
{
for (uint32_t i = 0; i < ARRAY_SIZE(nrf5_data.rx_frames); i++) {
if (nrf5_data.rx_frames[i].psdu != NULL) {
continue;
}
nrf5_data.rx_frames[i].psdu = data;
nrf5_data.rx_frames[i].rssi = power;
nrf5_data.rx_frames[i].lqi = lqi;
#if defined(CONFIG_NET_PKT_TIMESTAMP)
nrf5_data.rx_frames[i].time =
nrf_802154_timestamp_end_to_phr_convert(time, data[0]);
#endif
nrf5_data.rx_frames[i].ack_fpb = nrf5_data.last_frame_ack_fpb;
nrf5_data.rx_frames[i].ack_seb = nrf5_data.last_frame_ack_seb;
nrf5_data.last_frame_ack_fpb = false;
nrf5_data.last_frame_ack_seb = false;
k_fifo_put(&nrf5_data.rx_fifo, &nrf5_data.rx_frames[i]);
return;
}
__ASSERT(false, "Not enough rx frames allocated for 15.4 driver");
}
void nrf_802154_receive_failed(nrf_802154_rx_error_t error, uint32_t id)
{
const struct device *dev = nrf5_get_device();
#if defined(CONFIG_IEEE802154_CSL_ENDPOINT)
if (id == DRX_SLOT_RX && error == NRF_802154_RX_ERROR_DELAYED_TIMEOUT) {
if (!nrf5_data.rx_on_when_idle) {
/* Transition to RxOff done automatically by the driver */
return;
} else if (nrf5_data.event_handler) {
/* Notify the higher layer to allow it to transition if needed */
nrf5_data.event_handler(dev, IEEE802154_EVENT_RX_OFF, NULL);
}
}
#else
ARG_UNUSED(id);
#endif
enum ieee802154_rx_fail_reason reason;
switch (error) {
case NRF_802154_RX_ERROR_INVALID_FRAME:
case NRF_802154_RX_ERROR_DELAYED_TIMEOUT:
reason = IEEE802154_RX_FAIL_NOT_RECEIVED;
break;
case NRF_802154_RX_ERROR_INVALID_FCS:
reason = IEEE802154_RX_FAIL_INVALID_FCS;
break;
case NRF_802154_RX_ERROR_INVALID_DEST_ADDR:
reason = IEEE802154_RX_FAIL_ADDR_FILTERED;
break;
default:
reason = IEEE802154_RX_FAIL_OTHER;
break;
}
if (IS_ENABLED(CONFIG_IEEE802154_NRF5_LOG_RX_FAILURES)) {
LOG_INF("Rx failed, error = %d", error);
}
nrf5_data.last_frame_ack_fpb = false;
nrf5_data.last_frame_ack_seb = false;
if (nrf5_data.event_handler) {
nrf5_data.event_handler(dev, IEEE802154_EVENT_RX_FAILED, (void *)&reason);
}
}
void nrf_802154_tx_ack_started(const uint8_t *data)
{
nrf5_data.last_frame_ack_fpb = data[FRAME_PENDING_OFFSET] & FRAME_PENDING_BIT;
nrf5_data.last_frame_ack_seb = data[SECURITY_ENABLED_OFFSET] & SECURITY_ENABLED_BIT;
}
void nrf_802154_transmitted_raw(uint8_t *frame,
const nrf_802154_transmit_done_metadata_t *metadata)
{
ARG_UNUSED(frame);
nrf5_data.tx_result = NRF_802154_TX_ERROR_NONE;
nrf5_data.tx_frame_is_secured = metadata->frame_props.is_secured;
nrf5_data.tx_frame_mac_hdr_rdy = metadata->frame_props.dynamic_data_is_set;
nrf5_data.ack_frame.psdu = metadata->data.transmitted.p_ack;
if (nrf5_data.ack_frame.psdu) {
nrf5_data.ack_frame.rssi = metadata->data.transmitted.power;
nrf5_data.ack_frame.lqi = metadata->data.transmitted.lqi;
#if defined(CONFIG_NET_PKT_TIMESTAMP)
if (metadata->data.transmitted.time == NRF_802154_NO_TIMESTAMP) {
/* Ack timestamp is invalid. Keep this value to detect it when handling Ack
*/
nrf5_data.ack_frame.time = NRF_802154_NO_TIMESTAMP;
} else {
nrf5_data.ack_frame.time = nrf_802154_timestamp_end_to_phr_convert(
metadata->data.transmitted.time, nrf5_data.ack_frame.psdu[0]);
}
#endif
}
k_sem_give(&nrf5_data.tx_wait);
}
void nrf_802154_transmit_failed(uint8_t *frame,
nrf_802154_tx_error_t error,
const nrf_802154_transmit_done_metadata_t *metadata)
{
ARG_UNUSED(frame);
nrf5_data.tx_result = error;
nrf5_data.tx_frame_is_secured = metadata->frame_props.is_secured;
nrf5_data.tx_frame_mac_hdr_rdy = metadata->frame_props.dynamic_data_is_set;
k_sem_give(&nrf5_data.tx_wait);
}
void nrf_802154_cca_done(bool channel_free)
{
nrf5_data.channel_free = channel_free;
k_sem_give(&nrf5_data.cca_wait);
}
void nrf_802154_cca_failed(nrf_802154_cca_error_t error)
{
ARG_UNUSED(error);
nrf5_data.channel_free = false;
k_sem_give(&nrf5_data.cca_wait);
}
void nrf_802154_energy_detected(const nrf_802154_energy_detected_t *result)
{
if (nrf5_data.energy_scan_done != NULL) {
energy_scan_done_cb_t callback = nrf5_data.energy_scan_done;
nrf5_data.energy_scan_done = NULL;
callback(nrf5_get_device(), result->ed_dbm);
}
}
void nrf_802154_energy_detection_failed(nrf_802154_ed_error_t error)
{
if (nrf5_data.energy_scan_done != NULL) {
energy_scan_done_cb_t callback = nrf5_data.energy_scan_done;
nrf5_data.energy_scan_done = NULL;
callback(nrf5_get_device(), SHRT_MAX);
}
}
#if defined(CONFIG_NRF_802154_SER_HOST)
void nrf_802154_serialization_error(const nrf_802154_ser_err_data_t *err)
{
__ASSERT(false, "802.15.4 serialization error: %d", err->reason);
k_oops();
}
#endif
static const struct nrf5_802154_config nrf5_radio_cfg = {
.irq_config_func = nrf5_irq_config,
};
static const struct ieee802154_radio_api nrf5_radio_api = {
.iface_api.init = nrf5_iface_init,
.get_capabilities = nrf5_get_capabilities,
.cca = nrf5_cca,
.set_channel = nrf5_set_channel,
.filter = nrf5_filter,
.set_txpower = nrf5_set_txpower,
.start = nrf5_start,
.stop = nrf5_stop,
#if defined(CONFIG_NRF_802154_CARRIER_FUNCTIONS)
.continuous_carrier = nrf5_continuous_carrier,
#endif
.tx = nrf5_tx,
.ed_scan = nrf5_energy_scan_start,
.get_time = nrf5_get_time,
.get_sch_acc = nrf5_get_acc,
.configure = nrf5_configure,
.attr_get = nrf5_attr_get
};
#if defined(CONFIG_NET_L2_IEEE802154)
#define L2 IEEE802154_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(IEEE802154_L2)
#define MTU IEEE802154_MTU
#elif defined(CONFIG_NET_L2_OPENTHREAD)
#define L2 OPENTHREAD_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(OPENTHREAD_L2)
#define MTU 1280
#elif defined(CONFIG_NET_L2_CUSTOM_IEEE802154)
#define L2 CUSTOM_IEEE802154_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(CUSTOM_IEEE802154_L2)
#define MTU CONFIG_NET_L2_CUSTOM_IEEE802154_MTU
#endif
#if defined(CONFIG_NET_L2_PHY_IEEE802154)
NET_DEVICE_DT_INST_DEFINE(0, nrf5_init, NULL, &nrf5_data, &nrf5_radio_cfg,
CONFIG_IEEE802154_NRF5_INIT_PRIO, &nrf5_radio_api, L2,
L2_CTX_TYPE, MTU);
#else
DEVICE_DT_INST_DEFINE(0, nrf5_init, NULL, &nrf5_data, &nrf5_radio_cfg,
POST_KERNEL, CONFIG_IEEE802154_NRF5_INIT_PRIO,
&nrf5_radio_api);
#endif