blob: 1e71f041112ec62fed93fc6b057c331f0ae6604e [file] [log] [blame]
/*
* Copyright (c) 2019 Tobias Svehagen
* Copyright (c) 2020 Grinn
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp.h"
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(wifi_esp_at, CONFIG_WIFI_LOG_LEVEL);
#define RX_NET_PKT_ALLOC_TIMEOUT \
K_MSEC(CONFIG_WIFI_ESP_AT_RX_NET_PKT_ALLOC_TIMEOUT)
struct esp_workq_flush_data {
struct k_work work;
struct k_sem sem;
};
struct esp_socket *esp_socket_get(struct esp_data *data,
struct net_context *context)
{
struct esp_socket *sock = data->sockets;
struct esp_socket *sock_end = sock + ARRAY_SIZE(data->sockets);
for (; sock < sock_end; sock++) {
if (!esp_socket_flags_test_and_set(sock, ESP_SOCK_IN_USE)) {
/* here we should configure all the stuff needed */
sock->context = context;
context->offload_context = sock;
sock->connect_cb = NULL;
sock->recv_cb = NULL;
memset(&sock->src, 0x0, sizeof(sock->src));
memset(&sock->dst, 0x0, sizeof(sock->dst));
atomic_inc(&sock->refcount);
return sock;
}
}
return NULL;
}
int esp_socket_put(struct esp_socket *sock)
{
atomic_clear(&sock->flags);
return 0;
}
struct esp_socket *esp_socket_ref(struct esp_socket *sock)
{
atomic_val_t ref;
do {
ref = atomic_get(&sock->refcount);
if (!ref) {
return NULL;
}
} while (!atomic_cas(&sock->refcount, ref, ref + 1));
return sock;
}
void esp_socket_unref(struct esp_socket *sock)
{
atomic_val_t ref;
do {
ref = atomic_get(&sock->refcount);
if (!ref) {
return;
}
} while (!atomic_cas(&sock->refcount, ref, ref - 1));
k_sem_give(&sock->sem_free);
}
void esp_socket_init(struct esp_data *data)
{
struct esp_socket *sock;
int i;
for (i = 0; i < ARRAY_SIZE(data->sockets); ++i) {
sock = &data->sockets[i];
sock->idx = i;
sock->link_id = i;
atomic_clear(&sock->refcount);
atomic_clear(&sock->flags);
k_mutex_init(&sock->lock);
k_sem_init(&sock->sem_data_ready, 0, 1);
k_work_init(&sock->connect_work, esp_connect_work);
k_work_init(&sock->recvdata_work, esp_recvdata_work);
k_work_init(&sock->close_work, esp_close_work);
k_work_init(&sock->send_work, esp_send_work);
k_fifo_init(&sock->tx_fifo);
}
}
static struct net_pkt *esp_socket_prepare_pkt(struct esp_socket *sock,
struct net_buf *src,
size_t offset, size_t len)
{
struct esp_data *data = esp_socket_to_dev(sock);
struct net_buf *frag;
struct net_pkt *pkt;
size_t to_copy;
pkt = net_pkt_rx_alloc_with_buffer(data->net_iface, len, AF_UNSPEC,
0, RX_NET_PKT_ALLOC_TIMEOUT);
if (!pkt) {
return NULL;
}
frag = src;
/* find the right fragment to start copying from */
while (frag && offset >= frag->len) {
offset -= frag->len;
frag = frag->frags;
}
/* traverse the fragment chain until len bytes are copied */
while (frag && len > 0) {
to_copy = MIN(len, frag->len - offset);
if (net_pkt_write(pkt, frag->data + offset, to_copy) != 0) {
net_pkt_unref(pkt);
return NULL;
}
/* to_copy is always <= len */
len -= to_copy;
frag = frag->frags;
/* after the first iteration, this value will be 0 */
offset = 0;
}
net_pkt_set_context(pkt, sock->context);
net_pkt_cursor_init(pkt);
#if defined(CONFIG_WIFI_ESP_AT_CIPDINFO_USE)
memcpy(&pkt->remote, &sock->context->remote, sizeof(pkt->remote));
pkt->family = sock->src.sa_family;
#endif
return pkt;
}
void esp_socket_rx(struct esp_socket *sock, struct net_buf *buf,
size_t offset, size_t len)
{
struct net_pkt *pkt;
atomic_val_t flags;
flags = esp_socket_flags(sock);
#ifdef CONFIG_WIFI_ESP_AT_PASSIVE_MODE
/* In Passive Receive mode, ESP modem will buffer rx data and make it still
* available even though the peer has closed the connection.
*/
if (!(flags & ESP_SOCK_CONNECTED) &&
!(flags & ESP_SOCK_CLOSE_PENDING)) {
#else
if (!(flags & ESP_SOCK_CONNECTED) ||
(flags & ESP_SOCK_CLOSE_PENDING)) {
#endif
LOG_DBG("Received data on closed link %d", sock->link_id);
return;
}
pkt = esp_socket_prepare_pkt(sock, buf, offset, len);
if (!pkt) {
LOG_ERR("Failed to get net_pkt: len %zu", len);
if (esp_socket_type(sock) == SOCK_STREAM) {
if (!esp_socket_flags_test_and_set(sock,
ESP_SOCK_CLOSE_PENDING)) {
esp_socket_work_submit(sock, &sock->close_work);
}
}
return;
}
#ifdef CONFIG_NET_SOCKETS
/* We need to claim the net_context mutex here so that the ordering of
* net_context and socket mutex claims matches the TX code path. Failure
* to do so can lead to deadlocks.
*/
if (sock->context->cond.lock) {
k_mutex_lock(sock->context->cond.lock, K_FOREVER);
}
#endif /* CONFIG_NET_SOCKETS */
k_mutex_lock(&sock->lock, K_FOREVER);
if (sock->recv_cb) {
sock->recv_cb(sock->context, pkt, NULL, NULL,
0, sock->recv_user_data);
k_sem_give(&sock->sem_data_ready);
} else {
/* Discard */
net_pkt_unref(pkt);
}
k_mutex_unlock(&sock->lock);
#ifdef CONFIG_NET_SOCKETS
if (sock->context->cond.lock) {
k_mutex_unlock(sock->context->cond.lock);
}
#endif /* CONFIG_NET_SOCKETS */
}
void esp_socket_close(struct esp_socket *sock)
{
struct esp_data *dev = esp_socket_to_dev(sock);
char cmd_buf[sizeof("AT+CIPCLOSE=000")];
int ret;
snprintk(cmd_buf, sizeof(cmd_buf), "AT+CIPCLOSE=%d",
sock->link_id);
ret = esp_cmd_send(dev, NULL, 0, cmd_buf, ESP_CMD_TIMEOUT);
if (ret < 0) {
/* FIXME:
* If link doesn't close correctly here, esp_get could
* allocate a socket with an already open link.
*/
LOG_ERR("Failed to close link %d, ret %d",
sock->link_id, ret);
}
}
static void esp_workq_flush_work(struct k_work *work)
{
struct esp_workq_flush_data *flush =
CONTAINER_OF(work, struct esp_workq_flush_data, work);
k_sem_give(&flush->sem);
}
void esp_socket_workq_stop_and_flush(struct esp_socket *sock)
{
struct esp_workq_flush_data flush;
k_work_init(&flush.work, esp_workq_flush_work);
k_sem_init(&flush.sem, 0, 1);
k_mutex_lock(&sock->lock, K_FOREVER);
esp_socket_flags_set(sock, ESP_SOCK_WORKQ_STOPPED);
__esp_socket_work_submit(sock, &flush.work);
k_mutex_unlock(&sock->lock);
k_sem_take(&flush.sem, K_FOREVER);
}