blob: 0058baafce5d79b610aa280bfab0a0a8418f780d [file] [log] [blame]
/*
* Copyright (c) 2023 Renesas Electronics Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/entropy.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <zephyr/irq.h>
#include <zephyr/sys/barrier.h>
#include <DA1469xAB.h>
#define DT_DRV_COMPAT renesas_smartbond_trng
#define IRQN DT_INST_IRQN(0)
#define IRQ_PRIO DT_INST_IRQ(0, priority)
struct rng_pool {
uint8_t first_alloc;
uint8_t first_read;
uint8_t last;
uint8_t mask;
uint8_t threshold;
uint8_t buffer[0];
};
#define RNG_POOL_DEFINE(name, len) uint8_t name[sizeof(struct rng_pool) + (len)]
BUILD_ASSERT((CONFIG_ENTROPY_SMARTBOND_ISR_POOL_SIZE &
(CONFIG_ENTROPY_SMARTBOND_ISR_POOL_SIZE - 1)) == 0,
"The CONFIG_ENTROPY_SMARTBOND_ISR_POOL_SIZE must be a power of 2!");
BUILD_ASSERT((CONFIG_ENTROPY_SMARTBOND_THR_POOL_SIZE &
(CONFIG_ENTROPY_SMARTBOND_THR_POOL_SIZE - 1)) == 0,
"The CONFIG_ENTROPY_SMARTBOND_THR_POOL_SIZE must be a power of 2!");
struct entropy_smartbond_dev_data {
struct k_sem sem_lock;
struct k_sem sem_sync;
RNG_POOL_DEFINE(isr, CONFIG_ENTROPY_SMARTBOND_ISR_POOL_SIZE);
RNG_POOL_DEFINE(thr, CONFIG_ENTROPY_SMARTBOND_THR_POOL_SIZE);
};
static struct entropy_smartbond_dev_data entropy_smartbond_data;
/* TRNG FIFO definitions are not in DA1469x.h */
#define DA1469X_TRNG_FIFO_SIZE (32 * sizeof(uint32_t))
#define DA1469X_TRNG_FIFO_ADDR (0x30050000UL)
#define FIFO_COUNT_MASK \
(TRNG_TRNG_FIFOLVL_REG_TRNG_FIFOFULL_Msk | TRNG_TRNG_FIFOLVL_REG_TRNG_FIFOLVL_Msk)
static void trng_enable(bool enable)
{
unsigned int key;
key = irq_lock();
if (enable) {
CRG_TOP->CLK_AMBA_REG |= CRG_TOP_CLK_AMBA_REG_TRNG_CLK_ENABLE_Msk;
TRNG->TRNG_CTRL_REG = TRNG_TRNG_CTRL_REG_TRNG_ENABLE_Msk;
} else {
CRG_TOP->CLK_AMBA_REG &= ~CRG_TOP_CLK_AMBA_REG_TRNG_CLK_ENABLE_Msk;
TRNG->TRNG_CTRL_REG = 0;
}
irq_unlock(key);
}
static int trng_available(void)
{
return TRNG->TRNG_FIFOLVL_REG & FIFO_COUNT_MASK;
}
static inline uint32_t trng_fifo_read(void)
{
return *(uint32_t *)DA1469X_TRNG_FIFO_ADDR;
}
static int random_word_get(uint8_t buf[4])
{
uint32_t word = 0;
int retval = -EAGAIN;
unsigned int key;
key = irq_lock();
if (trng_available()) {
word = trng_fifo_read();
retval = 0;
}
irq_unlock(key);
buf[0] = (uint8_t)word;
buf[1] = (uint8_t)(word >> 8);
buf[2] = (uint8_t)(word >> 16);
buf[3] = (uint8_t)(word >> 24);
return retval;
}
#pragma GCC push_options
#if defined(CONFIG_BT_CTLR_FAST_ENC)
#pragma GCC optimize("Ofast")
#endif
static uint16_t rng_pool_get(struct rng_pool *rngp, uint8_t *buf, uint16_t len)
{
uint32_t last = rngp->last;
uint32_t mask = rngp->mask;
uint8_t *dst = buf;
uint32_t first, available;
uint32_t other_read_in_progress;
unsigned int key;
key = irq_lock();
first = rngp->first_alloc;
/*
* The other_read_in_progress is non-zero if rngp->first_read != first,
* which means that lower-priority code (which was interrupted by this
* call) already allocated area for read.
*/
other_read_in_progress = (rngp->first_read ^ first);
available = (last - first) & mask;
if (available < len) {
len = available;
}
/*
* Move alloc index forward to signal, that part of the buffer is
* now reserved for this call.
*/
rngp->first_alloc = (first + len) & mask;
irq_unlock(key);
while (likely(len--)) {
*dst++ = rngp->buffer[first];
first = (first + 1) & mask;
}
/*
* If this call is the last one accessing the pool, move read index
* to signal that all allocated regions are now read and could be
* overwritten.
*/
if (likely(!other_read_in_progress)) {
key = irq_lock();
rngp->first_read = rngp->first_alloc;
irq_unlock(key);
}
len = dst - buf;
available = available - len;
if (available <= rngp->threshold) {
trng_enable(true);
}
return len;
}
#pragma GCC pop_options
static int rng_pool_put(struct rng_pool *rngp, uint8_t byte)
{
uint8_t first = rngp->first_read;
uint8_t last = rngp->last;
uint8_t mask = rngp->mask;
/* Signal error if the pool is full. */
if (((last - first) & mask) == mask) {
return -ENOBUFS;
}
rngp->buffer[last] = byte;
rngp->last = (last + 1) & mask;
return 0;
}
static const uint8_t *rng_pool_put_bytes(struct rng_pool *rngp, const uint8_t *bytes,
const uint8_t *limit)
{
unsigned int key;
key = irq_lock();
for (; bytes < limit; ++bytes) {
if (rng_pool_put(rngp, *bytes) < 0) {
break;
}
}
irq_unlock(key);
return bytes;
}
static void rng_pool_init(struct rng_pool *rngp, uint16_t size, uint8_t threshold)
{
rngp->first_alloc = 0U;
rngp->first_read = 0U;
rngp->last = 0U;
rngp->mask = size - 1;
rngp->threshold = threshold;
}
static void smartbond_trng_isr(const void *arg)
{
uint8_t word[4];
const uint8_t *const limit = word + 4;
const uint8_t *ptr;
bool thread_signaled = false;
ARG_UNUSED(arg);
while (true) {
if (random_word_get(word) < 0) {
/* Nothing in FIFO -> nothing to do */
break;
}
ptr = word;
/* Put bytes in ISR FIFO first */
ptr = rng_pool_put_bytes((struct rng_pool *)(entropy_smartbond_data.isr), ptr,
limit);
if (ptr < limit) {
/* Put leftovers in thread FIFO */
if (!thread_signaled) {
thread_signaled = true;
k_sem_give(&entropy_smartbond_data.sem_sync);
}
ptr = rng_pool_put_bytes((struct rng_pool *)(entropy_smartbond_data.thr),
ptr, limit);
}
/* Bytes did not fit in isr nor thread FIFO, disable TRNG for now */
if (ptr < limit) {
trng_enable(false);
break;
}
}
}
static int entropy_smartbond_get_entropy(const struct device *dev, uint8_t *buf, uint16_t len)
{
ARG_UNUSED(dev);
/* Check if this API is called on correct driver instance. */
__ASSERT_NO_MSG(&entropy_smartbond_data == dev->data);
while (len) {
uint16_t bytes;
k_sem_take(&entropy_smartbond_data.sem_lock, K_FOREVER);
bytes = rng_pool_get((struct rng_pool *)(entropy_smartbond_data.thr), buf, len);
k_sem_give(&entropy_smartbond_data.sem_lock);
if (bytes == 0U) {
/* Pool is empty: Sleep until next interrupt. */
k_sem_take(&entropy_smartbond_data.sem_sync, K_FOREVER);
continue;
}
len -= bytes;
buf += bytes;
}
return 0;
}
static int entropy_smartbond_get_entropy_isr(const struct device *dev, uint8_t *buf, uint16_t len,
uint32_t flags)
{
ARG_UNUSED(dev);
uint16_t cnt = len;
/* Check if this API is called on correct driver instance. */
__ASSERT_NO_MSG(&entropy_smartbond_data == dev->data);
if (likely((flags & ENTROPY_BUSYWAIT) == 0U)) {
return rng_pool_get((struct rng_pool *)(entropy_smartbond_data.isr), buf, len);
}
if (len) {
unsigned int key;
int irq_enabled;
key = irq_lock();
irq_enabled = irq_is_enabled(IRQN);
irq_disable(IRQN);
irq_unlock(key);
trng_enable(true);
/* Clear NVIC pending bit. This ensures that a subsequent
* RNG event will set the Cortex-M single-bit event register
* to 1 (the bit is set when NVIC pending IRQ status is
* changed from 0 to 1)
*/
NVIC_ClearPendingIRQ(IRQN);
do {
uint8_t bytes[4];
const uint8_t *ptr = bytes;
const uint8_t *const limit = bytes + 4;
while (!trng_available()) {
/*
* To guarantee waking up from the event, the
* SEV-On-Pend feature must be enabled (enabled
* during ARCH initialization).
*
* DSB is recommended by spec before WFE (to
* guarantee completion of memory transactions)
*/
barrier_dsync_fence_full();
__WFE();
__SEV();
__WFE();
}
NVIC_ClearPendingIRQ(IRQN);
if (random_word_get(buf) != 0) {
continue;
}
while (ptr < limit) {
buf[--len] = *ptr++;
}
/* Store remaining data for later use */
if (unlikely(ptr < limit)) {
rng_pool_put_bytes((struct rng_pool *)(entropy_smartbond_data.isr),
ptr, limit);
}
} while (len);
if (irq_enabled) {
irq_enable(IRQN);
}
}
return cnt;
}
static const struct entropy_driver_api entropy_smartbond_api_funcs = {
.get_entropy = entropy_smartbond_get_entropy,
.get_entropy_isr = entropy_smartbond_get_entropy_isr};
static int entropy_smartbond_init(const struct device *dev)
{
/* Check if this API is called on correct driver instance. */
__ASSERT_NO_MSG(&entropy_smartbond_data == dev->data);
/* Locking semaphore initialized to 1 (unlocked) */
k_sem_init(&entropy_smartbond_data.sem_lock, 1, 1);
/* Syncing semaphore */
k_sem_init(&entropy_smartbond_data.sem_sync, 0, 1);
rng_pool_init((struct rng_pool *)(entropy_smartbond_data.thr),
CONFIG_ENTROPY_SMARTBOND_THR_POOL_SIZE,
CONFIG_ENTROPY_SMARTBOND_THR_THRESHOLD);
rng_pool_init((struct rng_pool *)(entropy_smartbond_data.isr),
CONFIG_ENTROPY_SMARTBOND_ISR_POOL_SIZE,
CONFIG_ENTROPY_SMARTBOND_ISR_THRESHOLD);
IRQ_CONNECT(IRQN, IRQ_PRIO, smartbond_trng_isr, &entropy_smartbond_data, 0);
irq_enable(IRQN);
trng_enable(true);
return 0;
}
DEVICE_DT_INST_DEFINE(0, entropy_smartbond_init, NULL, &entropy_smartbond_data, NULL, PRE_KERNEL_1,
CONFIG_ENTROPY_INIT_PRIORITY, &entropy_smartbond_api_funcs);