blob: e3d077d4208107182a517a2b3170f9a30ada38fb [file] [log] [blame]
/*
* Copyright (c) 2023 Antmicro <www.antmicro.com>
*
* Based on:
* sam0_rtc_timer.c Copyright (c) 2018 omSquare s.r.o.
* intel_adsp_timer.c Copyright (c) 2020 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT silabs_gecko_burtc
/**
* @file
* @brief SiLabs Gecko BURTC-based sys_clock driver
*
*/
#include <zephyr/device.h>
#include <soc.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/sys_clock.h>
#include <zephyr/irq.h>
#include <zephyr/spinlock.h>
#include <zephyr/logging/log.h>
#include "em_device.h"
#include "em_cmu.h"
#include "em_burtc.h"
LOG_MODULE_REGISTER(gecko_burtc_timer);
/* Maximum time interval between timer interrupts (in hw_cycles) */
#define MAX_TIMEOUT_CYC (UINT32_MAX >> 1)
/*
* Mininum time interval between now and IRQ firing that can be scheduled.
* The main cause for this is LFSYNC register update, which requires several
* LF clk cycles for synchronization.
* Seee e.g. "4.2.4.4.4 LFSYNC Registers" in "EFR32xG22 Reference Manual"
*/
#define MIN_DELAY_CYC (6u)
#define TIMER_IRQ (DT_INST_IRQN(0))
#if defined(CONFIG_TEST)
/* See tests/kernel/context */
const int32_t z_sys_timer_irq_for_test = TIMER_IRQ;
#endif
/* With CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME, that's where we
* should write hw_cycles timer clock frequency upon init
*/
extern int z_clock_hw_cycles_per_sec;
/* Number of hw_cycles clocks per 1 kernel tick */
static uint32_t g_cyc_per_tick;
/* MAX_TIMEOUT_CYC expressed as ticks */
static uint32_t g_max_timeout_ticks;
/* Value of BURTC counter when the previous kernel tick was announced */
static atomic_t g_last_count;
/* Spinlock to sync between Compare ISR and update of Compare register */
static struct k_spinlock g_lock;
/* Set to true when timer is initialized */
static bool g_init;
static void burtc_isr(const void *arg)
{
ARG_UNUSED(arg);
/* Clear the interrupt */
BURTC_IntClear(BURTC_IF_COMP);
uint32_t curr = BURTC_CounterGet();
/* NOTE: this is the only place where g_last_count is modified,
* so we don't need to do make the whole read-and-modify atomic, just
* writing it behind the memory barrier is enough
*/
uint32_t prev = atomic_get(&g_last_count);
/* How many ticks have we not announced since the last announcement */
uint32_t unannounced = (curr - prev) / g_cyc_per_tick;
atomic_set(&g_last_count, prev + unannounced * g_cyc_per_tick);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
/* Counter value on which announcement should be made */
uint32_t next = prev + g_cyc_per_tick;
/* `next` can be too close in the future since we're trying to
* announce the very next tick - in that case we skip one and
* announce the one after it instead
*/
if ((next - curr) < MIN_DELAY_CYC) {
next += g_cyc_per_tick;
}
BURTC_CompareSet(0, next);
}
sys_clock_announce(unannounced);
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
/*
* calculate 'ticks' value that specifies which tick to announce,
* beginning from the closest upcoming one:
* 0 - announce upcoming tick itself
* 1 - skip upcoming one, but announce the one after it, etc.
*/
ticks = (ticks == K_TICKS_FOREVER) ? g_max_timeout_ticks : ticks;
ticks = CLAMP(ticks - 1, 0, g_max_timeout_ticks);
k_spinlock_key_t key = k_spin_lock(&g_lock);
uint32_t curr = BURTC_CounterGet();
uint32_t prev = atomic_get(&g_last_count);
/* How many ticks have we not announced since the last announcement */
uint32_t unannounced = (curr - prev) / g_cyc_per_tick;
/* Which tick to announce (counting from the last announced one) */
uint32_t to_announce = unannounced + ticks + 1;
/* Force maximum interval between announcements. If we sit without
* announcements for too long, counter will roll over and we'll lose
* track of unannounced ticks.
*/
to_announce = MIN(to_announce, g_max_timeout_ticks);
/* Counter value on which announcement should be made */
uint32_t next = prev + to_announce * g_cyc_per_tick;
/* `next` can be too close in the future if we're trying to announce
* the very next tick - in that case we skip one and announce the one
* after it instead
*/
if ((next - curr) < MIN_DELAY_CYC) {
next += g_cyc_per_tick;
}
BURTC_CompareSet(0, next);
k_spin_unlock(&g_lock, key);
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL) || !g_init) {
return 0;
} else {
return (BURTC_CounterGet() - g_last_count) / g_cyc_per_tick;
}
}
uint32_t sys_clock_cycle_get_32(void)
{
/* API note: this function is unrelated to kernel ticks, it returns
* a value of some 32-bit hw_cycles counter which counts with
* z_clock_hw_cycles_per_sec frequency
*/
if (!g_init) {
return 0;
} else {
return BURTC_CounterGet();
}
}
static int burtc_init(void)
{
uint32_t hw_clock_freq;
BURTC_Init_TypeDef init = BURTC_INIT_DEFAULT;
/* Enable clock for BURTC CSRs on APB */
CMU_ClockEnable(cmuClock_BURTC, true);
/* Configure BURTC LF clocksource according to Kconfig */
#if defined(CONFIG_CMU_BURTCCLK_LFXO)
CMU_ClockSelectSet(cmuClock_BURTC, cmuSelect_LFXO);
#elif defined(CONFIG_CMU_BURTCCLK_LFRCO)
CMU_ClockSelectSet(cmuClock_BURTC, cmuSelect_LFRCO);
#elif defined(CONFIG_CMU_BURTCCLK_ULFRCO)
CMU_ClockSelectSet(cmuClock_BURTC, cmuSelect_ULFRCO);
#else
#error "Unsupported BURTC clock specified"
#endif
/* Calculate timing constants and init BURTC */
hw_clock_freq = CMU_ClockFreqGet(cmuClock_BURTC);
z_clock_hw_cycles_per_sec = hw_clock_freq;
BUILD_ASSERT(CONFIG_SYS_CLOCK_TICKS_PER_SEC > 0,
"Invalid CONFIG_SYS_CLOCK_TICKS_PER_SEC value");
g_cyc_per_tick = hw_clock_freq / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
__ASSERT(g_cyc_per_tick >= MIN_DELAY_CYC,
"%u cycle-long tick is too short to be scheduled "
"(min is %u). Config: SYS_CLOCK_TICKS_PER_SEC is "
"%d and timer frequency is %u",
g_cyc_per_tick, MIN_DELAY_CYC, CONFIG_SYS_CLOCK_TICKS_PER_SEC,
hw_clock_freq);
g_max_timeout_ticks = MAX_TIMEOUT_CYC / g_cyc_per_tick;
init.clkDiv = 1;
init.start = false;
BURTC_Init(&init);
g_init = true;
/* Enable compare match interrupt */
BURTC_IntClear(BURTC_IF_COMP);
BURTC_IntEnable(BURTC_IF_COMP);
NVIC_ClearPendingIRQ(TIMER_IRQ);
IRQ_CONNECT(TIMER_IRQ, DT_INST_IRQ(0, priority), burtc_isr, 0, 0);
irq_enable(TIMER_IRQ);
/* Start the timer and announce 1 kernel tick */
atomic_set(&g_last_count, 0);
BURTC_CompareSet(0, g_cyc_per_tick);
BURTC_SyncWait();
BURTC->CNT = 0;
BURTC_Start();
return 0;
}
SYS_INIT(burtc_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);