blob: 5803c1c4b95628d926495eb768abb620b81a2892 [file] [log] [blame]
/*
* Copyright (c) 2022 Synopsys
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
* @file
* @brief complex number multiplication portion of DSP sharing test
*
* @ingroup kernel_dspsharing_tests
*
* This module is used for the DSP sharing test, and supplements the basic
* load/store test by incorporating two additional threads that utilize the
* DSP unit.
*
* Testing utilizes a pair of tasks that independently compute complex vector
* dot product. The lower priority task is regularly preempted by the higher
* priority task, thereby testing whether DSP context information is properly
* preserved.
*
* A reference value of computed result is computed once at the start of the
* test. All subsequent computations must produce the same value, otherwise
* an error has occurred.
*/
#include <zephyr/ztest.h>
#include "fxarc.h"
#include "dsp_context.h"
#include "test_common.h"
/* stored in XY memory, need ARC_AGU_SHARING */
#define DATA_ATTR __xy __attribute__((section(".Xdata")))
static DATA_ATTR const cq15_t cq15_a[3] = {{0x20, 10}, {0x10, 20}, {4, 30}};
static DATA_ATTR const cq15_t cq15_b[3] = {{0x20, 11}, {0x10, 21}, {5, 31}};
static volatile short reference_result;
static volatile unsigned int calc_low_count;
static volatile unsigned int calc_high_count;
/* Indicates that the load/store test exited */
static volatile bool test_exited;
/* Semaphore for signaling end of test */
static K_SEM_DEFINE(test_exit_sem, 0, 1);
/**
* @brief Entry point for the low priority compute task
*
* @ingroup kernel_dspsharing_tests
*/
static void calculate_low(void)
{
volatile short res[2];
/* Loop until the test finishes, or an error is detected. */
for (calc_low_count = 0; !test_exited; calc_low_count++) {
v2accum32_t acc = {0, 0};
for (int i = 0; i < 3; i++) {
acc = fx_v2a32_cmac_cq15(acc, cq15_a[i], cq15_b[i]);
}
/* cast reult from v2accum32_ to short type */
res[0] = fx_q15_cast_asl_rnd_a32(fx_get_v2a32(acc, 0), 15);
res[1] = fx_q15_cast_asl_rnd_a32(fx_get_v2a32(acc, 1), 15);
if (reference_result == 0) {
reference_result = res[0];
} else if (reference_result != res[0]) {
printf("Computed result %d, reference result %d\n",
res[0], reference_result);
}
zassert_equal(reference_result, res[0], "complex product computation error");
}
}
/**
* @brief Entry point for the high priority compute task
*
* @ingroup kernel_dspsharing_tests
*/
static void calculate_high(void)
{
volatile short res[2];
/* Run the test until the specified maximum test count is reached */
for (calc_high_count = 0; calc_high_count <= MAX_TESTS; calc_high_count++) {
v2accum32_t acc = {0, 0};
for (int i = 0; i < 3; i++) {
acc = fx_v2a32_cmac_cq15(acc, cq15_a[i], cq15_b[i]);
}
/*
* Relinquish the processor for the remainder of the current
* system clock tick, so that lower priority threads get a
* chance to run.
*
* This exercises the ability of the kernel to restore the
* DSP state of a low priority thread _and_ the ability of the
* kernel to provide a "clean" DSP state to this thread
* once the sleep ends.
*/
k_sleep(K_MSEC(10));
res[0] = fx_q15_cast_asl_rnd_a32(fx_get_v2a32(acc, 0), 15);
res[1] = fx_q15_cast_asl_rnd_a32(fx_get_v2a32(acc, 1), 15);
if (reference_result == 0) {
reference_result = res[0];
} else if (reference_result != res[0]) {
printf("Computed result %d, reference result %d\n",
res[0], reference_result);
}
zassert_equal(reference_result, res[0], "complex product computation error");
/* Periodically issue progress report */
if ((calc_high_count % 100) == 50) {
printf("complex product calculation OK after %u (high) "
"+"
" %u (low) tests (computed %d)\n",
calc_high_count, calc_low_count, res[0]);
}
}
/* Signal end of test */
test_exited = true;
k_sem_give(&test_exit_sem);
}
K_THREAD_DEFINE(cal_low, THREAD_STACK_SIZE, calculate_low, NULL, NULL, NULL,
THREAD_LOW_PRIORITY, THREAD_DSP_FLAGS, K_TICKS_FOREVER);
K_THREAD_DEFINE(cal_high, THREAD_STACK_SIZE, calculate_high, NULL, NULL, NULL,
THREAD_HIGH_PRIORITY, THREAD_DSP_FLAGS, K_TICKS_FOREVER);
ZTEST(dsp_sharing, test_calculation)
{
/* Initialise test states */
test_exited = false;
k_sem_reset(&test_exit_sem);
/* Start test threads */
k_thread_start(cal_low);
k_thread_start(cal_high);
/* Wait for test threads to exit */
k_sem_take(&test_exit_sem, K_FOREVER);
}