blob: d06c8f875d62bb42af3c44e58e44154b28806350 [file] [log] [blame]
/*
* Copyright (c) 2013-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief New thread creation for ARM Cortex-M and Cortex-R
*
* Core thread related primitives for the ARM Cortex-M and Cortex-R
* processor architecture.
*/
#include <kernel.h>
#include <toolchain.h>
#include <kernel_structs.h>
#include <wait_q.h>
#ifdef CONFIG_USERSPACE
extern u8_t *z_priv_stack_find(void *obj);
#endif
/* An initial context, to be "restored" by z_arm_pendsv(), is put at the other
* end of the stack, and thus reusable by the stack when not needed anymore.
*
* The initial context is an exception stack frame (ESF) since exiting the
* PendSV exception will want to pop an ESF. Interestingly, even if the lsb of
* an instruction address to jump to must always be set since the CPU always
* runs in thumb mode, the ESF expects the real address of the instruction,
* with the lsb *not* set (instructions are always aligned on 16 bit
* halfwords). Since the compiler automatically sets the lsb of function
* addresses, we have to unset it manually before storing it in the 'pc' field
* of the ESF.
*/
void z_arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack,
size_t stackSize, k_thread_entry_t pEntry,
void *parameter1, void *parameter2, void *parameter3,
int priority, unsigned int options)
{
char *pStackMem = Z_THREAD_STACK_BUFFER(stack);
char *stackEnd;
/* Offset between the top of stack and the high end of stack area. */
u32_t top_of_stack_offset = 0U;
Z_ASSERT_VALID_PRIO(priority, pEntry);
#if defined(CONFIG_USERSPACE)
/* Truncate the stack size to align with the MPU region granularity.
* This is done proactively to account for the case when the thread
* switches to user mode (thus, its stack area will need to be MPU-
* programmed to be assigned unprivileged RW access permission).
*/
stackSize &= ~(CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1);
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
/* Reserve space on top of stack for local data. */
u32_t p_local_data = STACK_ROUND_DOWN(pStackMem + stackSize
- sizeof(*thread->userspace_local_data));
thread->userspace_local_data =
(struct _thread_userspace_local_data *)(p_local_data);
/* Top of actual stack must be moved below the user local data. */
top_of_stack_offset = (u32_t)
(pStackMem + stackSize - ((char *)p_local_data));
#endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */
#endif /* CONFIG_USERSPACE */
#if defined(CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT) \
&& defined(CONFIG_USERSPACE)
/* This is required to work-around the case where the thread
* is created without using K_THREAD_STACK_SIZEOF() macro in
* k_thread_create(). If K_THREAD_STACK_SIZEOF() is used, the
* Guard size has already been take out of stackSize.
*/
stackSize -= MPU_GUARD_ALIGN_AND_SIZE;
#endif
#if defined(CONFIG_FLOAT) && defined(CONFIG_FP_SHARING) \
&& defined(CONFIG_MPU_STACK_GUARD)
/* For a thread which intends to use the FP services, it is required to
* allocate a wider MPU guard region, to always successfully detect an
* overflow of the stack.
*
* Note that the wider MPU regions requires re-adjusting the stack_info
* .start and .size.
*
*/
if ((options & K_FP_REGS) != 0) {
pStackMem += MPU_GUARD_ALIGN_AND_SIZE_FLOAT
- MPU_GUARD_ALIGN_AND_SIZE;
stackSize -= MPU_GUARD_ALIGN_AND_SIZE_FLOAT
- MPU_GUARD_ALIGN_AND_SIZE;
}
#endif
stackEnd = pStackMem + stackSize;
struct __esf *pInitCtx;
z_new_thread_init(thread, pStackMem, stackSize, priority,
options);
/* Carve the thread entry struct from the "base" of the stack
*
* The initial carved stack frame only needs to contain the basic
* stack frame (state context), because no FP operations have been
* performed yet for this thread.
*/
pInitCtx = (struct __esf *)(STACK_ROUND_DOWN(stackEnd -
(char *)top_of_stack_offset - sizeof(struct __basic_sf)));
#if defined(CONFIG_USERSPACE)
if ((options & K_USER) != 0) {
pInitCtx->basic.pc = (u32_t)z_arch_user_mode_enter;
} else {
pInitCtx->basic.pc = (u32_t)z_thread_entry;
}
#else
pInitCtx->basic.pc = (u32_t)z_thread_entry;
#endif
#if defined(CONFIG_CPU_CORTEX_M)
/* force ARM mode by clearing LSB of address */
pInitCtx->basic.pc &= 0xfffffffe;
#endif
pInitCtx->basic.a1 = (u32_t)pEntry;
pInitCtx->basic.a2 = (u32_t)parameter1;
pInitCtx->basic.a3 = (u32_t)parameter2;
pInitCtx->basic.a4 = (u32_t)parameter3;
pInitCtx->basic.xpsr =
0x01000000UL; /* clear all, thumb bit is 1, even if RO */
thread->callee_saved.psp = (u32_t)pInitCtx;
#if defined(CONFIG_CPU_CORTEX_R)
pInitCtx->basic.lr = (u32_t)pInitCtx->basic.pc;
thread->callee_saved.spsr = A_BIT | T_BIT | MODE_SYS;
thread->callee_saved.lr = (u32_t)pInitCtx->basic.pc;
#endif
thread->arch.basepri = 0;
#if defined(CONFIG_USERSPACE) || defined(CONFIG_FP_SHARING)
thread->arch.mode = 0;
#if defined(CONFIG_USERSPACE)
thread->arch.priv_stack_start = 0;
#endif
#endif
/* swap_return_value can contain garbage */
/*
* initial values in all other registers/thread entries are
* irrelevant.
*/
}
#ifdef CONFIG_USERSPACE
FUNC_NORETURN void z_arch_user_mode_enter(k_thread_entry_t user_entry,
void *p1, void *p2, void *p3)
{
/* Set up privileged stack before entering user mode */
_current->arch.priv_stack_start =
(u32_t)z_priv_stack_find(_current->stack_obj);
#if defined(CONFIG_MPU_STACK_GUARD)
/* Stack guard area reserved at the bottom of the thread's
* privileged stack. Adjust the available (writable) stack
* buffer area accordingly.
*/
#if defined(CONFIG_FLOAT) && defined(CONFIG_FP_SHARING)
_current->arch.priv_stack_start +=
(_current->base.user_options & K_FP_REGS) ?
MPU_GUARD_ALIGN_AND_SIZE_FLOAT : MPU_GUARD_ALIGN_AND_SIZE;
#else
_current->arch.priv_stack_start += MPU_GUARD_ALIGN_AND_SIZE;
#endif /* CONFIG_FLOAT && CONFIG_FP_SHARING */
#endif /* CONFIG_MPU_STACK_GUARD */
z_arm_userspace_enter(user_entry, p1, p2, p3,
(u32_t)_current->stack_info.start,
_current->stack_info.size);
CODE_UNREACHABLE;
}
#endif
#if defined(CONFIG_BUILTIN_STACK_GUARD)
/*
* @brief Configure ARM built-in stack guard
*
* This function configures per thread stack guards by reprogramming
* the built-in Process Stack Pointer Limit Register (PSPLIM).
* The functionality is meant to be used during context switch.
*
* @param thread thread info data structure.
*/
void configure_builtin_stack_guard(struct k_thread *thread)
{
#if defined(CONFIG_USERSPACE)
if ((thread->arch.mode & CONTROL_nPRIV_Msk) != 0) {
/* Only configure stack limit for threads in privileged mode
* (i.e supervisor threads or user threads doing system call).
* User threads executing in user mode do not require a stack
* limit protection.
*/
return;
}
u32_t guard_start = thread->arch.priv_stack_start ?
(u32_t)thread->arch.priv_stack_start :
(u32_t)thread->stack_obj;
__ASSERT(thread->stack_info.start == ((u32_t)thread->stack_obj),
"stack_info.start does not point to the start of the"
"thread allocated area.");
#else
u32_t guard_start = thread->stack_info.start;
#endif
#if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
__set_PSPLIM(guard_start);
#else
#error "Built-in PSP limit checks not supported by HW"
#endif
}
#endif /* CONFIG_BUILTIN_STACK_GUARD */
#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
#define IS_MPU_GUARD_VIOLATION(guard_start, guard_len, fault_addr, stack_ptr) \
((fault_addr == -EINVAL) ? \
((fault_addr >= guard_start) && \
(fault_addr < (guard_start + guard_len)) && \
(stack_ptr < (guard_start + guard_len))) \
: \
(stack_ptr < (guard_start + guard_len)))
/**
* @brief Assess occurrence of current thread's stack corruption
*
* This function performs an assessment whether a memory fault (on a
* given memory address) is the result of stack memory corruption of
* the current thread.
*
* Thread stack corruption for supervisor threads or user threads in
* privilege mode (when User Space is supported) is reported upon an
* attempt to access the stack guard area (if MPU Stack Guard feature
* is supported). Additionally the current PSP (process stack pointer)
* must be pointing inside or below the guard area.
*
* Thread stack corruption for user threads in user mode is reported,
* if the current PSP is pointing below the start of the current
* thread's stack.
*
* Notes:
* - we assume a fully descending stack,
* - we assume a stacking error has occurred,
* - the function shall be called when handling MemManage and Bus fault,
* and only if a Stacking error has been reported.
*
* If stack corruption is detected, the function returns the lowest
* allowed address where the Stack Pointer can safely point to, to
* prevent from errors when un-stacking the corrupted stack frame
* upon exception return.
*
* @param fault_addr memory address on which memory access violation
* has been reported. It can be invalid (-EINVAL),
* if only Stacking error has been reported.
* @param psp current address the PSP points to
*
* @return The lowest allowed stack frame pointer, if error is a
* thread stack corruption, otherwise return 0.
*/
u32_t z_check_thread_stack_fail(const u32_t fault_addr, const u32_t psp)
{
const struct k_thread *thread = _current;
if (!thread) {
return 0;
}
#if defined(CONFIG_FLOAT) && defined(CONFIG_FP_SHARING)
u32_t guard_len = (thread->base.user_options & K_FP_REGS) ?
MPU_GUARD_ALIGN_AND_SIZE_FLOAT : MPU_GUARD_ALIGN_AND_SIZE;
#else
u32_t guard_len = MPU_GUARD_ALIGN_AND_SIZE;
#endif /* CONFIG_FLOAT && CONFIG_FP_SHARING */
#if defined(CONFIG_USERSPACE)
if (thread->arch.priv_stack_start) {
/* User thread */
if ((__get_CONTROL() & CONTROL_nPRIV_Msk) == 0) {
/* User thread in privilege mode */
if (IS_MPU_GUARD_VIOLATION(
thread->arch.priv_stack_start - guard_len,
guard_len,
fault_addr, psp)) {
/* Thread's privilege stack corruption */
return thread->arch.priv_stack_start;
}
} else {
if (psp < (u32_t)thread->stack_obj) {
/* Thread's user stack corruption */
return (u32_t)thread->stack_obj;
}
}
} else {
/* Supervisor thread */
if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start -
guard_len,
guard_len,
fault_addr, psp)) {
/* Supervisor thread stack corruption */
return thread->stack_info.start;
}
}
#else /* CONFIG_USERSPACE */
if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start - guard_len,
guard_len,
fault_addr, psp)) {
/* Thread stack corruption */
return thread->stack_info.start;
}
#endif /* CONFIG_USERSPACE */
return 0;
}
#endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */
#if defined(CONFIG_FLOAT) && defined(CONFIG_FP_SHARING)
int z_arch_float_disable(struct k_thread *thread)
{
if (thread != _current) {
return -EINVAL;
}
if (z_arch_is_in_isr()) {
return -EINVAL;
}
/* Disable all floating point capabilities for the thread */
/* K_FP_REG flag is used in SWAP and stack check fail. Locking
* interrupts here prevents a possible context-switch or MPU
* fault to take an outdated thread user_options flag into
* account.
*/
int key = z_arch_irq_lock();
thread->base.user_options &= ~K_FP_REGS;
__set_CONTROL(__get_CONTROL() & (~CONTROL_FPCA_Msk));
/* No need to add an ISB barrier after setting the CONTROL
* register; z_arch_irq_unlock() already adds one.
*/
z_arch_irq_unlock(key);
return 0;
}
#endif /* CONFIG_FLOAT && CONFIG_FP_SHARING */
void z_arch_switch_to_main_thread(struct k_thread *main_thread,
k_thread_stack_t *main_stack,
size_t main_stack_size,
k_thread_entry_t _main)
{
#if defined(CONFIG_FLOAT)
/* Initialize the Floating Point Status and Control Register when in
* Unshared FP Registers mode (In Shared FP Registers mode, FPSCR is
* initialized at thread creation for threads that make use of the FP).
*/
__set_FPSCR(0);
#if defined(CONFIG_FP_SHARING)
/* In Sharing mode clearing FPSCR may set the CONTROL.FPCA flag. */
__set_CONTROL(__get_CONTROL() & (~(CONTROL_FPCA_Msk)));
__ISB();
#endif /* CONFIG_FP_SHARING */
#endif /* CONFIG_FLOAT */
#ifdef CONFIG_ARM_MPU
/* Configure static memory map. This will program MPU regions,
* to set up access permissions for fixed memory sections, such
* as Application Memory or No-Cacheable SRAM area.
*
* This function is invoked once, upon system initialization.
*/
z_arm_configure_static_mpu_regions();
#endif
/* get high address of the stack, i.e. its start (stack grows down) */
char *start_of_main_stack;
start_of_main_stack =
Z_THREAD_STACK_BUFFER(main_stack) + main_stack_size;
start_of_main_stack = (char *)STACK_ROUND_DOWN(start_of_main_stack);
_current = main_thread;
#ifdef CONFIG_TRACING
sys_trace_thread_switched_in();
#endif
/* the ready queue cache already contains the main thread */
#ifdef CONFIG_ARM_MPU
/*
* If stack protection is enabled, make sure to set it
* before jumping to thread entry function
*/
z_arm_configure_dynamic_mpu_regions(main_thread);
#endif
#if defined(CONFIG_BUILTIN_STACK_GUARD)
/* Set PSPLIM register for built-in stack guarding of main thread. */
#if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
__set_PSPLIM((u32_t)main_stack);
#else
#error "Built-in PSP limit checks not supported by HW"
#endif
#endif /* CONFIG_BUILTIN_STACK_GUARD */
/*
* Set PSP to the highest address of the main stack
* before enabling interrupts and jumping to main.
*/
__asm__ volatile (
"mov r0, %0\n\t" /* Store _main in R0 */
#if defined(CONFIG_CPU_CORTEX_M)
"msr PSP, %1\n\t" /* __set_PSP(start_of_main_stack) */
#endif
"movs r1, #0\n\t"
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE) \
|| defined(CONFIG_ARMV7_R)
"cpsie i\n\t" /* __enable_irq() */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
"cpsie if\n\t" /* __enable_irq(); __enable_fault_irq() */
"msr BASEPRI, r1\n\t" /* __set_BASEPRI(0) */
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
"isb\n\t"
"movs r2, #0\n\t"
"movs r3, #0\n\t"
"bl z_thread_entry\n\t" /* z_thread_entry(_main, 0, 0, 0); */
:
: "r" (_main), "r" (start_of_main_stack)
: "r0" /* not to be overwritten by msr PSP, %1 */
);
CODE_UNREACHABLE;
}