blob: 9a5dd5be2f3be1346a2b3ed93272e9c6ea0602c3 [file] [log] [blame]
/* ST Microelectronics LSM6DSO 6-axis IMU sensor driver
*
* Copyright (c) 2019 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*
* Datasheet:
* https://www.st.com/resource/en/datasheet/lsm6dso.pdf
*/
#include <sensor.h>
#include <kernel.h>
#include <device.h>
#include <init.h>
#include <string.h>
#include <sys/byteorder.h>
#include <sys/__assert.h>
#include <logging/log.h>
#include "lsm6dso.h"
LOG_MODULE_REGISTER(LSM6DSO, CONFIG_SENSOR_LOG_LEVEL);
static const u16_t lsm6dso_odr_map[] = {0, 12, 26, 52, 104, 208, 416, 833,
1660, 3330, 6660};
#if defined(LSM6DSO_ACCEL_ODR_RUNTIME) || defined(LSM6DSO_GYRO_ODR_RUNTIME)
static int lsm6dso_freq_to_odr_val(u16_t freq)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lsm6dso_odr_map); i++) {
if (freq == lsm6dso_odr_map[i]) {
return i;
}
}
return -EINVAL;
}
#endif
static int lsm6dso_odr_to_freq_val(u16_t odr)
{
/* for valid index, return value from map */
if (odr < ARRAY_SIZE(lsm6dso_odr_map)) {
return lsm6dso_odr_map[odr];
}
/* invalid index, return last entry */
return lsm6dso_odr_map[ARRAY_SIZE(lsm6dso_odr_map) - 1];
}
#ifdef LSM6DSO_ACCEL_FS_RUNTIME
static const u16_t lsm6dso_accel_fs_map[] = {2, 16, 4, 8};
static const u16_t lsm6dso_accel_fs_sens[] = {1, 8, 2, 4};
static int lsm6dso_accel_range_to_fs_val(s32_t range)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lsm6dso_accel_fs_map); i++) {
if (range == lsm6dso_accel_fs_map[i]) {
return i;
}
}
return -EINVAL;
}
#endif
#ifdef LSM6DSO_GYRO_FS_RUNTIME
static const u16_t lsm6dso_gyro_fs_map[] = {250, 500, 1000, 2000, 125};
static const u16_t lsm6dso_gyro_fs_sens[] = {2, 4, 8, 16, 1};
static int lsm6dso_gyro_range_to_fs_val(s32_t range)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lsm6dso_gyro_fs_map); i++) {
if (range == lsm6dso_gyro_fs_map[i]) {
return i;
}
}
return -EINVAL;
}
#endif
static inline int lsm6dso_reboot(struct device *dev)
{
struct lsm6dso_data *data = dev->driver_data;
if (lsm6dso_boot_set(data->ctx, 1) < 0) {
return -EIO;
}
/* Wait sensor turn-on time as per datasheet */
k_busy_wait(35 * USEC_PER_MSEC);
return 0;
}
static int lsm6dso_accel_set_fs_raw(struct device *dev, u8_t fs)
{
struct lsm6dso_data *data = dev->driver_data;
if (lsm6dso_xl_full_scale_set(data->ctx, fs) < 0) {
return -EIO;
}
data->accel_fs = fs;
return 0;
}
static int lsm6dso_accel_set_odr_raw(struct device *dev, u8_t odr)
{
struct lsm6dso_data *data = dev->driver_data;
if (lsm6dso_xl_data_rate_set(data->ctx, odr) < 0) {
return -EIO;
}
data->accel_freq = lsm6dso_odr_to_freq_val(odr);
return 0;
}
static int lsm6dso_gyro_set_fs_raw(struct device *dev, u8_t fs)
{
struct lsm6dso_data *data = dev->driver_data;
if (lsm6dso_gy_full_scale_set(data->ctx, fs) < 0) {
return -EIO;
}
return 0;
}
static int lsm6dso_gyro_set_odr_raw(struct device *dev, u8_t odr)
{
struct lsm6dso_data *data = dev->driver_data;
if (lsm6dso_gy_data_rate_set(data->ctx, odr) < 0) {
return -EIO;
}
return 0;
}
#ifdef LSM6DSO_ACCEL_ODR_RUNTIME
static int lsm6dso_accel_odr_set(struct device *dev, u16_t freq)
{
int odr;
odr = lsm6dso_freq_to_odr_val(freq);
if (odr < 0) {
return odr;
}
if (lsm6dso_accel_set_odr_raw(dev, odr) < 0) {
LOG_DBG("failed to set accelerometer sampling rate");
return -EIO;
}
return 0;
}
#endif
#ifdef LSM6DSO_ACCEL_FS_RUNTIME
static int lsm6dso_accel_range_set(struct device *dev, s32_t range)
{
int fs;
struct lsm6dso_data *data = dev->driver_data;
fs = lsm6dso_accel_range_to_fs_val(range);
if (fs < 0) {
return fs;
}
if (lsm6dso_accel_set_fs_raw(dev, fs) < 0) {
LOG_DBG("failed to set accelerometer full-scale");
return -EIO;
}
data->acc_gain = (lsm6dso_accel_fs_sens[fs] * GAIN_UNIT_XL);
return 0;
}
#endif
static int lsm6dso_accel_config(struct device *dev, enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
#ifdef LSM6DSO_ACCEL_FS_RUNTIME
case SENSOR_ATTR_FULL_SCALE:
return lsm6dso_accel_range_set(dev, sensor_ms2_to_g(val));
#endif
#ifdef LSM6DSO_ACCEL_ODR_RUNTIME
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dso_accel_odr_set(dev, val->val1);
#endif
default:
LOG_DBG("Accel attribute not supported.");
return -ENOTSUP;
}
return 0;
}
#ifdef LSM6DSO_GYRO_ODR_RUNTIME
static int lsm6dso_gyro_odr_set(struct device *dev, u16_t freq)
{
int odr;
odr = lsm6dso_freq_to_odr_val(freq);
if (odr < 0) {
return odr;
}
if (lsm6dso_gyro_set_odr_raw(dev, odr) < 0) {
LOG_DBG("failed to set gyroscope sampling rate");
return -EIO;
}
return 0;
}
#endif
#ifdef LSM6DSO_GYRO_FS_RUNTIME
static int lsm6dso_gyro_range_set(struct device *dev, s32_t range)
{
int fs;
struct lsm6dso_data *data = dev->driver_data;
fs = lsm6dso_gyro_range_to_fs_val(range);
if (fs < 0) {
return fs;
}
if (lsm6dso_gyro_set_fs_raw(dev, fs) < 0) {
LOG_DBG("failed to set gyroscope full-scale");
return -EIO;
}
data->gyro_gain = (lsm6dso_gyro_fs_sens[fs] * GAIN_UNIT_G);
return 0;
}
#endif
static int lsm6dso_gyro_config(struct device *dev, enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
#ifdef LSM6DSO_GYRO_FS_RUNTIME
case SENSOR_ATTR_FULL_SCALE:
return lsm6dso_gyro_range_set(dev, sensor_rad_to_degrees(val));
#endif
#ifdef LSM6DSO_GYRO_ODR_RUNTIME
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dso_gyro_odr_set(dev, val->val1);
#endif
default:
LOG_DBG("Gyro attribute not supported.");
return -ENOTSUP;
}
return 0;
}
static int lsm6dso_attr_set(struct device *dev, enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (chan) {
case SENSOR_CHAN_ACCEL_XYZ:
return lsm6dso_accel_config(dev, chan, attr, val);
case SENSOR_CHAN_GYRO_XYZ:
return lsm6dso_gyro_config(dev, chan, attr, val);
#if defined(CONFIG_LSM6DSO_SENSORHUB)
case SENSOR_CHAN_MAGN_XYZ:
case SENSOR_CHAN_PRESS:
case SENSOR_CHAN_HUMIDITY:
return lsm6dso_shub_config(dev, chan, attr, val);
#endif /* CONFIG_LSM6DSO_SENSORHUB */
default:
LOG_WRN("attr_set() not supported on this channel.");
return -ENOTSUP;
}
return 0;
}
static int lsm6dso_sample_fetch_accel(struct device *dev)
{
struct lsm6dso_data *data = dev->driver_data;
union axis3bit16_t buf;
if (lsm6dso_acceleration_raw_get(data->ctx, buf.u8bit) < 0) {
LOG_DBG("Failed to read sample");
return -EIO;
}
data->acc[0] = sys_le16_to_cpu(buf.i16bit[0]);
data->acc[1] = sys_le16_to_cpu(buf.i16bit[1]);
data->acc[2] = sys_le16_to_cpu(buf.i16bit[2]);
return 0;
}
static int lsm6dso_sample_fetch_gyro(struct device *dev)
{
struct lsm6dso_data *data = dev->driver_data;
union axis3bit16_t buf;
if (lsm6dso_angular_rate_raw_get(data->ctx, buf.u8bit) < 0) {
LOG_DBG("Failed to read sample");
return -EIO;
}
data->gyro[0] = sys_le16_to_cpu(buf.i16bit[0]);
data->gyro[1] = sys_le16_to_cpu(buf.i16bit[1]);
data->gyro[2] = sys_le16_to_cpu(buf.i16bit[2]);
return 0;
}
#if defined(CONFIG_LSM6DSO_ENABLE_TEMP)
static int lsm6dso_sample_fetch_temp(struct device *dev)
{
struct lsm6dso_data *data = dev->driver_data;
union axis1bit16_t buf;
if (lsm6dso_temperature_raw_get(data->ctx, buf.u8bit) < 0) {
LOG_DBG("Failed to read sample");
return -EIO;
}
data->temp_sample = sys_le16_to_cpu(buf.i16bit);
return 0;
}
#endif
#if defined(CONFIG_LSM6DSO_SENSORHUB)
static int lsm6dso_sample_fetch_shub(struct device *dev)
{
if (lsm6dso_shub_fetch_external_devs(dev) < 0) {
LOG_DBG("failed to read ext shub devices");
return -EIO;
}
return 0;
}
#endif /* CONFIG_LSM6DSO_SENSORHUB */
static int lsm6dso_sample_fetch(struct device *dev, enum sensor_channel chan)
{
switch (chan) {
case SENSOR_CHAN_ACCEL_XYZ:
lsm6dso_sample_fetch_accel(dev);
#if defined(CONFIG_LSM6DSO_SENSORHUB)
lsm6dso_sample_fetch_shub(dev);
#endif
break;
case SENSOR_CHAN_GYRO_XYZ:
lsm6dso_sample_fetch_gyro(dev);
break;
#if defined(CONFIG_LSM6DSO_ENABLE_TEMP)
case SENSOR_CHAN_DIE_TEMP:
lsm6dso_sample_fetch_temp(dev);
break;
#endif
case SENSOR_CHAN_ALL:
lsm6dso_sample_fetch_accel(dev);
lsm6dso_sample_fetch_gyro(dev);
#if defined(CONFIG_LSM6DSO_ENABLE_TEMP)
lsm6dso_sample_fetch_temp(dev);
#endif
#if defined(CONFIG_LSM6DSO_SENSORHUB)
lsm6dso_sample_fetch_shub(dev);
#endif
break;
default:
return -ENOTSUP;
}
return 0;
}
static inline void lsm6dso_accel_convert(struct sensor_value *val, int raw_val,
u32_t sensitivity)
{
s64_t dval;
/* Sensitivity is exposed in ug/LSB */
/* Convert to m/s^2 */
dval = (s64_t)(raw_val) * sensitivity * SENSOR_G_DOUBLE;
val->val1 = (s32_t)(dval / 1000000);
val->val2 = (s32_t)(dval % 1000000);
}
static inline int lsm6dso_accel_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dso_data *data,
u32_t sensitivity)
{
u8_t i;
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
lsm6dso_accel_convert(val, data->acc[0], sensitivity);
break;
case SENSOR_CHAN_ACCEL_Y:
lsm6dso_accel_convert(val, data->acc[1], sensitivity);
break;
case SENSOR_CHAN_ACCEL_Z:
lsm6dso_accel_convert(val, data->acc[2], sensitivity);
break;
case SENSOR_CHAN_ACCEL_XYZ:
for (i = 0; i < 3; i++) {
lsm6dso_accel_convert(val++, data->acc[i], sensitivity);
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static int lsm6dso_accel_channel_get(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dso_data *data)
{
return lsm6dso_accel_get_channel(chan, val, data, data->acc_gain);
}
static inline void lsm6dso_gyro_convert(struct sensor_value *val, int raw_val,
u32_t sensitivity)
{
s64_t dval;
/* Sensitivity is exposed in udps/LSB */
/* Convert to rad/s */
dval = (s64_t)(raw_val) * sensitivity * SENSOR_DEG2RAD_DOUBLE;
val->val1 = (s32_t)(dval / 1000000);
val->val2 = (s32_t)(dval % 1000000);
}
static inline int lsm6dso_gyro_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dso_data *data,
u32_t sensitivity)
{
u8_t i;
switch (chan) {
case SENSOR_CHAN_GYRO_X:
lsm6dso_gyro_convert(val, data->gyro[0], sensitivity);
break;
case SENSOR_CHAN_GYRO_Y:
lsm6dso_gyro_convert(val, data->gyro[1], sensitivity);
break;
case SENSOR_CHAN_GYRO_Z:
lsm6dso_gyro_convert(val, data->gyro[2], sensitivity);
break;
case SENSOR_CHAN_GYRO_XYZ:
for (i = 0; i < 3; i++) {
lsm6dso_gyro_convert(val++, data->gyro[i], sensitivity);
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static int lsm6dso_gyro_channel_get(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dso_data *data)
{
return lsm6dso_gyro_get_channel(chan, val, data,
LSM6DSO_DEFAULT_GYRO_SENSITIVITY);
}
#if defined(CONFIG_LSM6DSO_ENABLE_TEMP)
static void lsm6dso_gyro_channel_get_temp(struct sensor_value *val,
struct lsm6dso_data *data)
{
/* val = temp_sample / 256 + 25 */
val->val1 = data->temp_sample / 256 + 25;
val->val2 = (data->temp_sample % 256) * (1000000 / 256);
}
#endif
#if defined(CONFIG_LSM6DSO_SENSORHUB)
static inline void lsm6dso_magn_convert(struct sensor_value *val, int raw_val,
u16_t sensitivity)
{
double dval;
/* Sensitivity is exposed in mgauss/LSB */
dval = (double)(raw_val * sensitivity);
val->val1 = (s32_t)dval / 1000000;
val->val2 = (s32_t)dval % 1000000;
}
static inline int lsm6dso_magn_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dso_data *data)
{
s16_t sample[3];
int idx;
idx = lsm6dso_shub_get_idx(SENSOR_CHAN_MAGN_XYZ);
if (idx < 0) {
LOG_DBG("external magn not supported");
return -ENOTSUP;
}
sample[0] = sys_le16_to_cpu((s16_t)(data->ext_data[idx][0] |
(data->ext_data[idx][1] << 8)));
sample[1] = sys_le16_to_cpu((s16_t)(data->ext_data[idx][2] |
(data->ext_data[idx][3] << 8)));
sample[2] = sys_le16_to_cpu((s16_t)(data->ext_data[idx][4] |
(data->ext_data[idx][5] << 8)));
switch (chan) {
case SENSOR_CHAN_MAGN_X:
lsm6dso_magn_convert(val, sample[0], data->magn_gain);
break;
case SENSOR_CHAN_MAGN_Y:
lsm6dso_magn_convert(val, sample[1], data->magn_gain);
break;
case SENSOR_CHAN_MAGN_Z:
lsm6dso_magn_convert(val, sample[2], data->magn_gain);
break;
case SENSOR_CHAN_MAGN_XYZ:
lsm6dso_magn_convert(val, sample[0], data->magn_gain);
lsm6dso_magn_convert(val + 1, sample[1], data->magn_gain);
lsm6dso_magn_convert(val + 2, sample[2], data->magn_gain);
break;
default:
return -ENOTSUP;
}
return 0;
}
static inline void lsm6dso_hum_convert(struct sensor_value *val,
struct lsm6dso_data *data)
{
float rh;
s16_t raw_val;
struct hts221_data *ht = &data->hts221;
int idx;
idx = lsm6dso_shub_get_idx(SENSOR_CHAN_HUMIDITY);
if (idx < 0) {
LOG_DBG("external press/temp not supported");
return;
}
raw_val = sys_le16_to_cpu((s16_t)(data->ext_data[idx][0] |
(data->ext_data[idx][1] << 8)));
/* find relative humidty by linear interpolation */
rh = (ht->y1 - ht->y0) * raw_val + ht->x1 * ht->y0 - ht->x0 * ht->y1;
rh /= (ht->x1 - ht->x0);
/* convert humidity to integer and fractional part */
val->val1 = rh;
val->val2 = rh * 1000000;
}
static inline void lsm6dso_press_convert(struct sensor_value *val,
struct lsm6dso_data *data)
{
s32_t raw_val;
int idx;
idx = lsm6dso_shub_get_idx(SENSOR_CHAN_PRESS);
if (idx < 0) {
LOG_DBG("external press/temp not supported");
return;
}
raw_val = sys_le32_to_cpu((s32_t)(data->ext_data[idx][0] |
(data->ext_data[idx][1] << 8) |
(data->ext_data[idx][2] << 16)));
/* Pressure sensitivity is 4096 LSB/hPa */
/* Convert raw_val to val in kPa */
val->val1 = (raw_val >> 12) / 10;
val->val2 = (raw_val >> 12) % 10 * 100000 +
(((s32_t)((raw_val) & 0x0FFF) * 100000L) >> 12);
}
static inline void lsm6dso_temp_convert(struct sensor_value *val,
struct lsm6dso_data *data)
{
s16_t raw_val;
int idx;
idx = lsm6dso_shub_get_idx(SENSOR_CHAN_PRESS);
if (idx < 0) {
LOG_DBG("external press/temp not supported");
return;
}
raw_val = sys_le16_to_cpu((s16_t)(data->ext_data[idx][3] |
(data->ext_data[idx][4] << 8)));
/* Temperature sensitivity is 100 LSB/deg C */
val->val1 = raw_val / 100;
val->val2 = (s32_t)raw_val % 100 * (10000);
}
#endif
static int lsm6dso_channel_get(struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct lsm6dso_data *data = dev->driver_data;
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
case SENSOR_CHAN_ACCEL_Y:
case SENSOR_CHAN_ACCEL_Z:
case SENSOR_CHAN_ACCEL_XYZ:
lsm6dso_accel_channel_get(chan, val, data);
break;
case SENSOR_CHAN_GYRO_X:
case SENSOR_CHAN_GYRO_Y:
case SENSOR_CHAN_GYRO_Z:
case SENSOR_CHAN_GYRO_XYZ:
lsm6dso_gyro_channel_get(chan, val, data);
break;
#if defined(CONFIG_LSM6DSO_ENABLE_TEMP)
case SENSOR_CHAN_DIE_TEMP:
lsm6dso_gyro_channel_get_temp(val, data);
break;
#endif
#if defined(CONFIG_LSM6DSO_SENSORHUB)
case SENSOR_CHAN_MAGN_X:
case SENSOR_CHAN_MAGN_Y:
case SENSOR_CHAN_MAGN_Z:
case SENSOR_CHAN_MAGN_XYZ:
lsm6dso_magn_get_channel(chan, val, data);
break;
case SENSOR_CHAN_HUMIDITY:
lsm6dso_hum_convert(val, data);
break;
case SENSOR_CHAN_PRESS:
lsm6dso_press_convert(val, data);
break;
case SENSOR_CHAN_AMBIENT_TEMP:
lsm6dso_temp_convert(val, data);
break;
#endif
default:
return -ENOTSUP;
}
return 0;
}
static const struct sensor_driver_api lsm6dso_api_funcs = {
.attr_set = lsm6dso_attr_set,
#if CONFIG_LSM6DSO_TRIGGER
.trigger_set = lsm6dso_trigger_set,
#endif
.sample_fetch = lsm6dso_sample_fetch,
.channel_get = lsm6dso_channel_get,
};
static int lsm6dso_init_chip(struct device *dev)
{
struct lsm6dso_data *lsm6dso = dev->driver_data;
u8_t chip_id;
if (lsm6dso_device_id_get(lsm6dso->ctx, &chip_id) < 0) {
LOG_DBG("Failed reading chip id");
return -EIO;
}
LOG_INF("chip id 0x%x", chip_id);
if (chip_id != LSM6DSO_ID) {
LOG_DBG("Invalid chip id 0x%x", chip_id);
return -EIO;
}
/* reset device */
if (lsm6dso_reset_set(lsm6dso->ctx, 1) < 0) {
return -EIO;
}
k_busy_wait(100);
if (lsm6dso_accel_set_fs_raw(dev,
LSM6DSO_DEFAULT_ACCEL_FULLSCALE) < 0) {
LOG_DBG("failed to set accelerometer full-scale");
return -EIO;
}
lsm6dso->acc_gain = LSM6DSO_DEFAULT_ACCEL_SENSITIVITY;
lsm6dso->accel_freq = lsm6dso_odr_to_freq_val(CONFIG_LSM6DSO_ACCEL_ODR);
if (lsm6dso_accel_set_odr_raw(dev, CONFIG_LSM6DSO_ACCEL_ODR) < 0) {
LOG_DBG("failed to set accelerometer sampling rate");
return -EIO;
}
if (lsm6dso_gyro_set_fs_raw(dev, LSM6DSO_DEFAULT_GYRO_FULLSCALE) < 0) {
LOG_DBG("failed to set gyroscope full-scale");
return -EIO;
}
lsm6dso->gyro_gain = LSM6DSO_DEFAULT_GYRO_SENSITIVITY;
lsm6dso->gyro_freq = lsm6dso_odr_to_freq_val(CONFIG_LSM6DSO_GYRO_ODR);
if (lsm6dso_gyro_set_odr_raw(dev, CONFIG_LSM6DSO_GYRO_ODR) < 0) {
LOG_DBG("failed to set gyroscope sampling rate");
return -EIO;
}
/* Set FIFO bypass mode */
if (lsm6dso_fifo_mode_set(lsm6dso->ctx, LSM6DSO_BYPASS_MODE) < 0) {
LOG_DBG("failed to set FIFO mode");
return -EIO;
}
if (lsm6dso_block_data_update_set(lsm6dso->ctx, 1) < 0) {
LOG_DBG("failed to set BDU mode");
return -EIO;
}
return 0;
}
static struct lsm6dso_data lsm6dso_data;
static const struct lsm6dso_config lsm6dso_config = {
.bus_name = DT_INST_0_ST_LSM6DSO_BUS_NAME,
#if defined(DT_ST_LSM6DSO_BUS_SPI)
.bus_init = lsm6dso_spi_init,
.spi_conf.frequency = DT_INST_0_ST_LSM6DSO_SPI_MAX_FREQUENCY,
.spi_conf.operation = (SPI_OP_MODE_MASTER | SPI_MODE_CPOL |
SPI_MODE_CPHA | SPI_WORD_SET(8) |
SPI_LINES_SINGLE),
.spi_conf.slave = DT_INST_0_ST_LSM6DSO_BASE_ADDRESS,
#if defined(DT_INST_0_ST_LSM6DSO_CS_GPIOS_CONTROLLER)
.gpio_cs_port = DT_INST_0_ST_LSM6DSO_CS_GPIOS_CONTROLLER,
.cs_gpio = DT_INST_0_ST_LSM6DSO_CS_GPIOS_PIN,
.spi_conf.cs = &lsm6dso_data.cs_ctrl,
#else
.spi_conf.cs = NULL,
#endif
#elif defined(DT_ST_LSM6DSO_BUS_I2C)
.bus_init = lsm6dso_i2c_init,
.i2c_slv_addr = DT_INST_0_ST_LSM6DSO_BASE_ADDRESS,
#else
#error "BUS MACRO NOT DEFINED IN DTS"
#endif
#ifdef CONFIG_LSM6DSO_TRIGGER
.int_gpio_port = DT_INST_0_ST_LSM6DSO_IRQ_GPIOS_CONTROLLER,
.int_gpio_pin = DT_INST_0_ST_LSM6DSO_IRQ_GPIOS_PIN,
#if defined(CONFIG_LSM6DSO_INT_PIN_1)
.int_pin = 1,
#elif defined(CONFIG_LSM6DSO_INT_PIN_2)
.int_pin = 2,
#endif /* CONFIG_LSM6DSO_INT_PIN */
#endif /* CONFIG_LSM6DSO_TRIGGER */
};
static int lsm6dso_init(struct device *dev)
{
const struct lsm6dso_config * const config = dev->config->config_info;
struct lsm6dso_data *data = dev->driver_data;
data->bus = device_get_binding(config->bus_name);
if (!data->bus) {
LOG_DBG("master not found: %s",
config->bus_name);
return -EINVAL;
}
config->bus_init(dev);
#ifdef CONFIG_LSM6DSO_TRIGGER
if (lsm6dso_init_interrupt(dev) < 0) {
LOG_ERR("Failed to initialize interrupt.");
return -EIO;
}
#endif
if (lsm6dso_init_chip(dev) < 0) {
LOG_DBG("failed to initialize chip");
return -EIO;
}
#ifdef CONFIG_LSM6DSO_SENSORHUB
if (lsm6dso_shub_init(dev) < 0) {
LOG_DBG("failed to initialize external chip");
return -EIO;
}
#endif
return 0;
}
static struct lsm6dso_data lsm6dso_data;
DEVICE_AND_API_INIT(lsm6dso, DT_INST_0_ST_LSM6DSO_LABEL, lsm6dso_init,
&lsm6dso_data, &lsm6dso_config, POST_KERNEL,
CONFIG_SENSOR_INIT_PRIORITY, &lsm6dso_api_funcs);