blob: 824c35812d525a792da6cf08c8b2c489eca39ef9 [file] [log] [blame]
/*
* Copyright (c) 2019 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Internal kernel APIs with public scope
*
* The main set of architecture APIs is specified by
* include/sys/arch_interface.h
*
* Any public kernel APIs that are implemented as inline functions and need to
* call architecture-specific APIso will have the prototypes for the
* architecture-specific APIs here. Architecture APIs that aren't used in this
* way go in include/sys/arch_interface.h.
*
* The set of architecture-specific macros used internally by public macros
* in public headers is also specified and documented.
*
* For all macros and inline function prototypes described herein, <arch/cpu.h>
* must eventually pull in full definitions for all of them (the actual macro
* defines and inline function bodies)
*
* include/kernel.h and other public headers depend on definitions in this
* header.
*/
#ifndef ZEPHYR_INCLUDE_SYS_ARCH_INLINES_H_
#define ZEPHYR_INCLUDE_SYS_ARCH_INLINES_H_
#ifndef _ASMLANGUAGE
#include <stdbool.h>
#include <zephyr/types.h>
#include <arch/cpu.h>
#ifdef __cplusplus
extern "C" {
#endif
/* NOTE: We cannot pull in kernel.h here, need some forward declarations */
struct k_thread;
typedef struct _k_thread_stack_element k_thread_stack_t;
/**
* @addtogroup arch-timing
* @{
*/
/**
* Obtain the current cycle count, in units that are hardware-specific
*
* @see k_cycle_get_32()
*/
static inline u32_t z_arch_k_cycle_get_32(void);
/** @} */
/**
* @addtogroup arch-threads
* @{
*/
/**
* @def Z_ARCH_THREAD_STACK_DEFINE(sym, size)
*
* @see K_THREAD_STACK_DEFINE()
*/
/**
* @def Z_ARCH_THREAD_STACK_ARRAY_DEFINE(sym, size)
*
* @see K_THREAD_STACK_ARRAY_DEFINE()
*/
/**
* @def Z_ARCH_THREAD_STACK_LEN(size)
*
* @see K_THREAD_STACK_LEN()
*/
/**
* @def Z_ARCH_THREAD_STACK_MEMBER(sym, size)
*
* @see K_THREAD_STACK_MEMBER()
*/
/*
* @def Z_ARCH_THREAD_STACK_SIZEOF(sym)
*
* @see K_THREAD_STACK_SIZEOF()
*/
/**
* @def Z_ARCH_THREAD_STACK_RESERVED
*
* @see K_THREAD_STACK_RESERVED
*/
/**
* @def Z_ARCH_THREAD_STACK_BUFFER(sym)
*
* @see K_THREAD_STACK_RESERVED
*/
/** @} */
/**
* @addtogroup arch-pm
* @{
*/
/**
* @brief Power save idle routine
*
* This function will be called by the kernel idle loop or possibly within
* an implementation of z_sys_power_save_idle in the kernel when the
* '_sys_power_save_flag' variable is non-zero.
*
* Architectures that do not implement power management instructions may
* immediately return, otherwise a power-saving instruction should be
* issued to wait for an interrupt.
*
* @see k_cpu_idle()
*/
void z_arch_cpu_idle(void);
/**
* @brief Atomically re-enable interrupts and enter low power mode
*
* The requirements for z_arch_cpu_atomic_idle() are as follows:
*
* 1) Enabling interrupts and entering a low-power mode needs to be
* atomic, i.e. there should be no period of time where interrupts are
* enabled before the processor enters a low-power mode. See the comments
* in k_lifo_get(), for example, of the race condition that
* occurs if this requirement is not met.
*
* 2) After waking up from the low-power mode, the interrupt lockout state
* must be restored as indicated in the 'key' input parameter.
*
* @see k_cpu_atomic_idle()
*
* @param key Lockout key returned by previous invocation of z_arch_irq_lock()
*/
void z_arch_cpu_atomic_idle(unsigned int key);
/** @} */
/**
* @addtogroup arch-smp
* @{
*/
/**
* @brief Start a numbered CPU on a MP-capable system
*
* This starts and initializes a specific CPU. The main thread on startup is
* running on CPU zero, other processors are numbered sequentially. On return
* from this function, the CPU is known to have begun operating and will enter
* the provided function. Its interrupts will be initialized but disabled such
* that irq_unlock() with the provided key will work to enable them.
*
* Normally, in SMP mode this function will be called by the kernel
* initialization and should not be used as a user API. But it is defined here
* for special-purpose apps which want Zephyr running on one core and to use
* others for design-specific processing.
*
* @param cpu_num Integer number of the CPU
* @param stack Stack memory for the CPU
* @param sz Stack buffer size, in bytes
* @param fn Function to begin running on the CPU. First argument is
* an irq_unlock() key.
* @param arg Untyped argument to be passed to "fn"
*/
void z_arch_start_cpu(int cpu_num, k_thread_stack_t *stack, int sz,
void (*fn)(int key, void *data), void *arg);
/** @} */
/**
* @addtogroup arch-irq
* @{
*/
/**
* Lock interrupts on the current CPU
*
* @see irq_lock()
*/
static inline unsigned int z_arch_irq_lock(void);
/**
* Unlock interrupts on the current CPU
*
* @see irq_unlock()
*/
static inline void z_arch_irq_unlock(unsigned int key);
/**
* Test if calling z_arch_irq_unlock() with this key would unlock irqs
*
* @param key value returned by z_arch_irq_lock()
* @return true if interrupts were unlocked prior to the z_arch_irq_lock()
* call that produced the key argument.
*/
static inline bool z_arch_irq_unlocked(unsigned int key);
/**
* Disable the specified interrupt line
*
* @see irq_disable()
*/
void z_arch_irq_disable(unsigned int irq);
/**
* Enable the specified interrupt line
*
* @see irq_enable()
*/
void z_arch_irq_enable(unsigned int irq);
/**
* Test if an interrupt line is enabled
*
* @see irq_is_enabled()
*/
int z_arch_irq_is_enabled(unsigned int irq);
/**
* Arch-specific hook to install a dynamic interrupt.
*
* @param irq IRQ line number
* @param priority Interrupt priority
* @param routine Interrupt service routine
* @param parameter ISR parameter
* @param flags Arch-specific IRQ configuration flag
*
* @return The vector assigned to this interrupt
*/
int z_arch_irq_connect_dynamic(unsigned int irq, unsigned int priority,
void (*routine)(void *parameter),
void *parameter, u32_t flags);
/**
* @def Z_ARCH_IRQ_CONNECT(irq, pri, isr, arg, flags)
*
* @see IRQ_CONNECT()
*/
/**
* @def Z_ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p)
*
* @see IRQ_DIRECT_CONNECT()
*/
/**
* @def Z_ARCH_ISR_DIRECT_PM()
*
* @see ISR_DIRECT_PM()
*/
/**
* @def Z_ARCH_ISR_DIRECT_HEADER()
*
* @see ISR_DIRECT_HEADER()
*/
/**
* @def Z_ARCH_ISR_DIRECT_FOOTER(swap)
*
* @see ISR_DIRECT_FOOTER()
*/
/**
* @def Z_ARCH_ISR_DIRECT_DECLARE(name)
*
* @see ISR_DIRECT_DECLARE()
*/
/**
* @def Z_ARCH_EXCEPT(reason_p)
*
* Generate a software induced fatal error.
*
* If the caller is running in user mode, only K_ERR_KERNEL_OOPS or
* K_ERR_STACK_CHK_FAIL may be induced.
*
* This should ideally generate a software trap, with exception context
* indicating state when this was invoked. General purpose register state at
* the time of trap should not be disturbed from the calling context.
*
* @param reason_p K_ERR_ scoped reason code for the fatal error.
*/
#ifdef CONFIG_IRQ_OFFLOAD
typedef void (*irq_offload_routine_t)(void *parameter);
/**
* Run a function in interrupt context.
*
* Implementations should invoke an exception such that the kernel goes through
* its interrupt handling dispatch path, to include switching to the interrupt
* stack, and runs the provided routine and parameter.
*
* The only intended use-case for this function is for test code to simulate
* the correctness of kernel APIs in interrupt handling context. This API
* is not intended for real applications.
*
* @see irq_offload()
*
* @param routine Function to run in interrupt context
* @param parameter Value to pass to the function when invoked
*/
void z_arch_irq_offload(irq_offload_routine_t routine, void *parameter);
#endif /* CONFIG_IRQ_OFFLOAD */
/** @} */
/**
* @addtogroup arch-userspace
* @{
*/
#ifdef CONFIG_USERSPACE
/**
* Invoke a system call with 0 arguments.
*
* No general-purpose register state other than return value may be preserved
* when transitioning from supervisor mode back down to user mode for
* security reasons.
*
* It is required that all arguments be stored in registers when elevating
* privileges from user to supervisor mode.
*
* Processing of the syscall takes place on a separate kernel stack. Interrupts
* should be enabled when invoking the system call marshallers from the
* dispatch table. Thread preemption may occur when handling system calls.
*
* Call ids are untrusted and must be bounds-checked, as the value is used to
* index the system call dispatch table, containing function pointers to the
* specific system call code.
*
* @param call_id System call ID
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline u32_t z_arch_syscall_invoke0(u32_t call_id);
/**
* Invoke a system call with 1 argument.
*
* @see z_arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline u32_t z_arch_syscall_invoke1(u32_t arg1, u32_t call_id);
/**
* Invoke a system call with 2 arguments.
*
* @see z_arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline u32_t z_arch_syscall_invoke2(u32_t arg1, u32_t arg2,
u32_t call_id);
/**
* Invoke a system call with 3 arguments.
*
* @see z_arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline u32_t z_arch_syscall_invoke3(u32_t arg1, u32_t arg2, u32_t arg3,
u32_t call_id);
/**
* Invoke a system call with 4 arguments.
*
* @see z_arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param arg4 Fourth argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline u32_t z_arch_syscall_invoke4(u32_t arg1, u32_t arg2, u32_t arg3,
u32_t arg4, u32_t call_id);
/**
* Invoke a system call with 5 arguments.
*
* @see z_arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param arg4 Fourth argument to the system call.
* @param arg5 Fifth argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline u32_t z_arch_syscall_invoke5(u32_t arg1, u32_t arg2, u32_t arg3,
u32_t arg4, u32_t arg5,
u32_t call_id);
/**
* Invoke a system call with 6 arguments.
*
* @see z_arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param arg4 Fourth argument to the system call.
* @param arg5 Fifth argument to the system call.
* @param arg6 Sixth argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline u32_t z_arch_syscall_invoke6(u32_t arg1, u32_t arg2, u32_t arg3,
u32_t arg4, u32_t arg5, u32_t arg6,
u32_t call_id);
/**
* Indicate whether we are currently running in user mode
*
* @return true if the CPU is currently running with user permissions
*/
static inline bool z_arch_is_user_context(void);
#endif /* CONFIG_USERSPACE */
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* _ASMLANGUAGE */
#endif /* ZEPHYR_INCLUDE?SYS_ARCH_INLINES_H_ */