| /* |
| * Copyright (c) 2017 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| |
| #include <kernel.h> |
| #include <string.h> |
| #include <sys/math_extras.h> |
| #include <sys/rb.h> |
| #include <kernel_structs.h> |
| #include <sys/sys_io.h> |
| #include <ksched.h> |
| #include <syscall.h> |
| #include <syscall_handler.h> |
| #include <device.h> |
| #include <init.h> |
| #include <stdbool.h> |
| #include <app_memory/app_memdomain.h> |
| #include <sys/libc-hooks.h> |
| #include <sys/mutex.h> |
| |
| #ifdef Z_LIBC_PARTITION_EXISTS |
| K_APPMEM_PARTITION_DEFINE(z_libc_partition); |
| #endif |
| |
| /* TODO: Find a better place to put this. Since we pull the entire |
| * lib..__modules__crypto__mbedtls.a globals into app shared memory |
| * section, we can't put this in zephyr_init.c of the mbedtls module. |
| */ |
| #ifdef CONFIG_MBEDTLS |
| K_APPMEM_PARTITION_DEFINE(k_mbedtls_partition); |
| #endif |
| |
| #define LOG_LEVEL CONFIG_KERNEL_LOG_LEVEL |
| #include <logging/log.h> |
| LOG_MODULE_DECLARE(os); |
| |
| /* The originally synchronization strategy made heavy use of recursive |
| * irq_locking, which ports poorly to spinlocks which are |
| * non-recursive. Rather than try to redesign as part of |
| * spinlockification, this uses multiple locks to preserve the |
| * original semantics exactly. The locks are named for the data they |
| * protect where possible, or just for the code that uses them where |
| * not. |
| */ |
| #ifdef CONFIG_DYNAMIC_OBJECTS |
| static struct k_spinlock lists_lock; /* kobj rbtree/dlist */ |
| static struct k_spinlock objfree_lock; /* k_object_free */ |
| #endif |
| static struct k_spinlock obj_lock; /* kobj struct data */ |
| |
| #define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * 8) |
| |
| #ifdef CONFIG_DYNAMIC_OBJECTS |
| extern u8_t _thread_idx_map[CONFIG_MAX_THREAD_BYTES]; |
| #endif |
| |
| static void clear_perms_cb(struct _k_object *ko, void *ctx_ptr); |
| |
| const char *otype_to_str(enum k_objects otype) |
| { |
| const char *ret; |
| /* -fdata-sections doesn't work right except in very very recent |
| * GCC and these literal strings would appear in the binary even if |
| * otype_to_str was omitted by the linker |
| */ |
| #ifdef CONFIG_LOG |
| switch (otype) { |
| /* otype-to-str.h is generated automatically during build by |
| * gen_kobject_list.py |
| */ |
| #include <otype-to-str.h> |
| default: |
| ret = "?"; |
| break; |
| } |
| #else |
| ARG_UNUSED(otype); |
| return NULL; |
| #endif |
| return ret; |
| } |
| |
| struct perm_ctx { |
| int parent_id; |
| int child_id; |
| struct k_thread *parent; |
| }; |
| |
| #ifdef CONFIG_DYNAMIC_OBJECTS |
| struct dyn_obj { |
| struct _k_object kobj; |
| sys_dnode_t obj_list; |
| struct rbnode node; /* must be immediately before data member */ |
| u8_t data[]; /* The object itself */ |
| }; |
| |
| extern struct _k_object *z_object_gperf_find(void *obj); |
| extern void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func, |
| void *context); |
| |
| static bool node_lessthan(struct rbnode *a, struct rbnode *b); |
| |
| /* |
| * Red/black tree of allocated kernel objects, for reasonably fast lookups |
| * based on object pointer values. |
| */ |
| static struct rbtree obj_rb_tree = { |
| .lessthan_fn = node_lessthan |
| }; |
| |
| /* |
| * Linked list of allocated kernel objects, for iteration over all allocated |
| * objects (and potentially deleting them during iteration). |
| */ |
| static sys_dlist_t obj_list = SYS_DLIST_STATIC_INIT(&obj_list); |
| |
| /* |
| * TODO: Write some hash table code that will replace both obj_rb_tree |
| * and obj_list. |
| */ |
| |
| static size_t obj_size_get(enum k_objects otype) |
| { |
| size_t ret; |
| |
| switch (otype) { |
| #include <otype-to-size.h> |
| default: |
| ret = sizeof(struct device); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static bool node_lessthan(struct rbnode *a, struct rbnode *b) |
| { |
| return a < b; |
| } |
| |
| static inline struct dyn_obj *node_to_dyn_obj(struct rbnode *node) |
| { |
| return CONTAINER_OF(node, struct dyn_obj, node); |
| } |
| |
| static struct dyn_obj *dyn_object_find(void *obj) |
| { |
| struct rbnode *node; |
| struct dyn_obj *ret; |
| |
| /* For any dynamically allocated kernel object, the object |
| * pointer is just a member of the conatining struct dyn_obj, |
| * so just a little arithmetic is necessary to locate the |
| * corresponding struct rbnode |
| */ |
| node = (struct rbnode *)((char *)obj - sizeof(struct rbnode)); |
| |
| k_spinlock_key_t key = k_spin_lock(&lists_lock); |
| if (rb_contains(&obj_rb_tree, node)) { |
| ret = node_to_dyn_obj(node); |
| } else { |
| ret = NULL; |
| } |
| k_spin_unlock(&lists_lock, key); |
| |
| return ret; |
| } |
| |
| /** |
| * @internal |
| * |
| * @brief Allocate a new thread index for a new thread. |
| * |
| * This finds an unused thread index that can be assigned to a new |
| * thread. If too many threads have been allocated, the kernel will |
| * run out of indexes and this function will fail. |
| * |
| * Note that if an unused index is found, that index will be marked as |
| * used after return of this function. |
| * |
| * @param tidx The new thread index if successful |
| * |
| * @return true if successful, false if failed |
| **/ |
| static bool thread_idx_alloc(u32_t *tidx) |
| { |
| int i; |
| int idx; |
| int base; |
| |
| base = 0; |
| for (i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) { |
| idx = find_lsb_set(_thread_idx_map[i]); |
| |
| if (idx != 0) { |
| *tidx = base + (idx - 1); |
| |
| sys_bitfield_clear_bit((mem_addr_t)_thread_idx_map, |
| *tidx); |
| |
| /* Clear permission from all objects */ |
| z_object_wordlist_foreach(clear_perms_cb, |
| (void *)*tidx); |
| |
| return true; |
| } |
| |
| base += 8; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * @internal |
| * |
| * @brief Free a thread index. |
| * |
| * This frees a thread index so it can be used by another |
| * thread. |
| * |
| * @param tidx The thread index to be freed |
| **/ |
| static void thread_idx_free(u32_t tidx) |
| { |
| /* To prevent leaked permission when index is recycled */ |
| z_object_wordlist_foreach(clear_perms_cb, (void *)tidx); |
| |
| sys_bitfield_set_bit((mem_addr_t)_thread_idx_map, tidx); |
| } |
| |
| void *z_impl_k_object_alloc(enum k_objects otype) |
| { |
| struct dyn_obj *dyn_obj; |
| u32_t tidx; |
| |
| /* Stacks are not supported, we don't yet have mem pool APIs |
| * to request memory that is aligned |
| */ |
| __ASSERT(otype > K_OBJ_ANY && otype < K_OBJ_LAST && |
| otype != K_OBJ__THREAD_STACK_ELEMENT, |
| "bad object type requested"); |
| |
| dyn_obj = z_thread_malloc(sizeof(*dyn_obj) + obj_size_get(otype)); |
| if (dyn_obj == NULL) { |
| LOG_WRN("could not allocate kernel object"); |
| return NULL; |
| } |
| |
| dyn_obj->kobj.name = (char *)&dyn_obj->data; |
| dyn_obj->kobj.type = otype; |
| dyn_obj->kobj.flags = K_OBJ_FLAG_ALLOC; |
| (void)memset(dyn_obj->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES); |
| |
| /* Need to grab a new thread index for k_thread */ |
| if (otype == K_OBJ_THREAD) { |
| if (!thread_idx_alloc(&tidx)) { |
| k_free(dyn_obj); |
| return NULL; |
| } |
| |
| dyn_obj->kobj.data = tidx; |
| } |
| |
| /* The allocating thread implicitly gets permission on kernel objects |
| * that it allocates |
| */ |
| z_thread_perms_set(&dyn_obj->kobj, _current); |
| |
| k_spinlock_key_t key = k_spin_lock(&lists_lock); |
| |
| rb_insert(&obj_rb_tree, &dyn_obj->node); |
| sys_dlist_append(&obj_list, &dyn_obj->obj_list); |
| k_spin_unlock(&lists_lock, key); |
| |
| return dyn_obj->kobj.name; |
| } |
| |
| void k_object_free(void *obj) |
| { |
| struct dyn_obj *dyn_obj; |
| |
| /* This function is intentionally not exposed to user mode. |
| * There's currently no robust way to track that an object isn't |
| * being used by some other thread |
| */ |
| |
| k_spinlock_key_t key = k_spin_lock(&objfree_lock); |
| |
| dyn_obj = dyn_object_find(obj); |
| if (dyn_obj != NULL) { |
| rb_remove(&obj_rb_tree, &dyn_obj->node); |
| sys_dlist_remove(&dyn_obj->obj_list); |
| |
| if (dyn_obj->kobj.type == K_OBJ_THREAD) { |
| thread_idx_free(dyn_obj->kobj.data); |
| } |
| } |
| k_spin_unlock(&objfree_lock, key); |
| |
| if (dyn_obj != NULL) { |
| k_free(dyn_obj); |
| } |
| } |
| |
| struct _k_object *z_object_find(void *obj) |
| { |
| struct _k_object *ret; |
| |
| ret = z_object_gperf_find(obj); |
| |
| if (ret == NULL) { |
| struct dyn_obj *dynamic_obj; |
| |
| dynamic_obj = dyn_object_find(obj); |
| if (dynamic_obj != NULL) { |
| ret = &dynamic_obj->kobj; |
| } |
| } |
| |
| return ret; |
| } |
| |
| void z_object_wordlist_foreach(_wordlist_cb_func_t func, void *context) |
| { |
| struct dyn_obj *obj, *next; |
| |
| z_object_gperf_wordlist_foreach(func, context); |
| |
| k_spinlock_key_t key = k_spin_lock(&lists_lock); |
| |
| SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&obj_list, obj, next, obj_list) { |
| func(&obj->kobj, context); |
| } |
| k_spin_unlock(&lists_lock, key); |
| } |
| #endif /* CONFIG_DYNAMIC_OBJECTS */ |
| |
| static int thread_index_get(struct k_thread *t) |
| { |
| struct _k_object *ko; |
| |
| ko = z_object_find(t); |
| |
| if (ko == NULL) { |
| return -1; |
| } |
| |
| return ko->data; |
| } |
| |
| static void unref_check(struct _k_object *ko, int index) |
| { |
| k_spinlock_key_t key = k_spin_lock(&obj_lock); |
| |
| sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index); |
| |
| #ifdef CONFIG_DYNAMIC_OBJECTS |
| struct dyn_obj *dyn_obj = |
| CONTAINER_OF(ko, struct dyn_obj, kobj); |
| |
| if ((ko->flags & K_OBJ_FLAG_ALLOC) == 0U) { |
| goto out; |
| } |
| |
| for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) { |
| if (ko->perms[i] != 0U) { |
| goto out; |
| } |
| } |
| |
| /* This object has no more references. Some objects may have |
| * dynamically allocated resources, require cleanup, or need to be |
| * marked as uninitailized when all references are gone. What |
| * specifically needs to happen depends on the object type. |
| */ |
| switch (ko->type) { |
| case K_OBJ_PIPE: |
| k_pipe_cleanup((struct k_pipe *)ko->name); |
| break; |
| case K_OBJ_MSGQ: |
| k_msgq_cleanup((struct k_msgq *)ko->name); |
| break; |
| case K_OBJ_STACK: |
| k_stack_cleanup((struct k_stack *)ko->name); |
| break; |
| default: |
| /* Nothing to do */ |
| break; |
| } |
| |
| rb_remove(&obj_rb_tree, &dyn_obj->node); |
| sys_dlist_remove(&dyn_obj->obj_list); |
| k_free(dyn_obj); |
| out: |
| #endif |
| k_spin_unlock(&obj_lock, key); |
| } |
| |
| static void wordlist_cb(struct _k_object *ko, void *ctx_ptr) |
| { |
| struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr; |
| |
| if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) && |
| (struct k_thread *)ko->name != ctx->parent) { |
| sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id); |
| } |
| } |
| |
| void z_thread_perms_inherit(struct k_thread *parent, struct k_thread *child) |
| { |
| struct perm_ctx ctx = { |
| thread_index_get(parent), |
| thread_index_get(child), |
| parent |
| }; |
| |
| if ((ctx.parent_id != -1) && (ctx.child_id != -1)) { |
| z_object_wordlist_foreach(wordlist_cb, &ctx); |
| } |
| } |
| |
| void z_thread_perms_set(struct _k_object *ko, struct k_thread *thread) |
| { |
| int index = thread_index_get(thread); |
| |
| if (index != -1) { |
| sys_bitfield_set_bit((mem_addr_t)&ko->perms, index); |
| } |
| } |
| |
| void z_thread_perms_clear(struct _k_object *ko, struct k_thread *thread) |
| { |
| int index = thread_index_get(thread); |
| |
| if (index != -1) { |
| sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index); |
| unref_check(ko, index); |
| } |
| } |
| |
| static void clear_perms_cb(struct _k_object *ko, void *ctx_ptr) |
| { |
| int id = (int)ctx_ptr; |
| |
| unref_check(ko, id); |
| } |
| |
| void z_thread_perms_all_clear(struct k_thread *thread) |
| { |
| int index = thread_index_get(thread); |
| |
| if (index != -1) { |
| z_object_wordlist_foreach(clear_perms_cb, (void *)index); |
| } |
| } |
| |
| static int thread_perms_test(struct _k_object *ko) |
| { |
| int index; |
| |
| if ((ko->flags & K_OBJ_FLAG_PUBLIC) != 0U) { |
| return 1; |
| } |
| |
| index = thread_index_get(_current); |
| if (index != -1) { |
| return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index); |
| } |
| return 0; |
| } |
| |
| static void dump_permission_error(struct _k_object *ko) |
| { |
| int index = thread_index_get(_current); |
| LOG_ERR("thread %p (%d) does not have permission on %s %p", |
| _current, index, |
| otype_to_str(ko->type), ko->name); |
| LOG_HEXDUMP_ERR(ko->perms, sizeof(ko->perms), "permission bitmap"); |
| } |
| |
| void z_dump_object_error(int retval, void *obj, struct _k_object *ko, |
| enum k_objects otype) |
| { |
| switch (retval) { |
| case -EBADF: |
| LOG_ERR("%p is not a valid %s", obj, otype_to_str(otype)); |
| break; |
| case -EPERM: |
| dump_permission_error(ko); |
| break; |
| case -EINVAL: |
| LOG_ERR("%p used before initialization", obj); |
| break; |
| case -EADDRINUSE: |
| LOG_ERR("%p %s in use", obj, otype_to_str(otype)); |
| break; |
| default: |
| /* Not handled error */ |
| break; |
| } |
| } |
| |
| void z_impl_k_object_access_grant(void *object, struct k_thread *thread) |
| { |
| struct _k_object *ko = z_object_find(object); |
| |
| if (ko != NULL) { |
| z_thread_perms_set(ko, thread); |
| } |
| } |
| |
| void k_object_access_revoke(void *object, struct k_thread *thread) |
| { |
| struct _k_object *ko = z_object_find(object); |
| |
| if (ko != NULL) { |
| z_thread_perms_clear(ko, thread); |
| } |
| } |
| |
| void z_impl_k_object_release(void *object) |
| { |
| k_object_access_revoke(object, _current); |
| } |
| |
| void k_object_access_all_grant(void *object) |
| { |
| struct _k_object *ko = z_object_find(object); |
| |
| if (ko != NULL) { |
| ko->flags |= K_OBJ_FLAG_PUBLIC; |
| } |
| } |
| |
| int z_object_validate(struct _k_object *ko, enum k_objects otype, |
| enum _obj_init_check init) |
| { |
| if (unlikely((ko == NULL) || |
| (otype != K_OBJ_ANY && ko->type != otype))) { |
| return -EBADF; |
| } |
| |
| /* Manipulation of any kernel objects by a user thread requires that |
| * thread be granted access first, even for uninitialized objects |
| */ |
| if (unlikely(thread_perms_test(ko) == 0)) { |
| return -EPERM; |
| } |
| |
| /* Initialization state checks. _OBJ_INIT_ANY, we don't care */ |
| if (likely(init == _OBJ_INIT_TRUE)) { |
| /* Object MUST be intialized */ |
| if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0U)) { |
| return -EINVAL; |
| } |
| } else if (init < _OBJ_INIT_TRUE) { /* _OBJ_INIT_FALSE case */ |
| /* Object MUST NOT be initialized */ |
| if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) != 0U)) { |
| return -EADDRINUSE; |
| } |
| } else { |
| /* _OBJ_INIT_ANY */ |
| } |
| |
| return 0; |
| } |
| |
| void z_object_init(void *obj) |
| { |
| struct _k_object *ko; |
| |
| /* By the time we get here, if the caller was from userspace, all the |
| * necessary checks have been done in z_object_validate(), which takes |
| * place before the object is initialized. |
| * |
| * This function runs after the object has been initialized and |
| * finalizes it |
| */ |
| |
| ko = z_object_find(obj); |
| if (ko == NULL) { |
| /* Supervisor threads can ignore rules about kernel objects |
| * and may declare them on stacks, etc. Such objects will never |
| * be usable from userspace, but we shouldn't explode. |
| */ |
| return; |
| } |
| |
| /* Allows non-initialization system calls to be made on this object */ |
| ko->flags |= K_OBJ_FLAG_INITIALIZED; |
| } |
| |
| void z_object_recycle(void *obj) |
| { |
| struct _k_object *ko = z_object_find(obj); |
| |
| if (ko != NULL) { |
| (void)memset(ko->perms, 0, sizeof(ko->perms)); |
| z_thread_perms_set(ko, k_current_get()); |
| ko->flags |= K_OBJ_FLAG_INITIALIZED; |
| } |
| } |
| |
| void z_object_uninit(void *obj) |
| { |
| struct _k_object *ko; |
| |
| /* See comments in z_object_init() */ |
| ko = z_object_find(obj); |
| if (ko == NULL) { |
| return; |
| } |
| |
| ko->flags &= ~K_OBJ_FLAG_INITIALIZED; |
| } |
| |
| /* |
| * Copy to/from helper functions used in syscall handlers |
| */ |
| void *z_user_alloc_from_copy(const void *src, size_t size) |
| { |
| void *dst = NULL; |
| |
| /* Does the caller in user mode have access to read this memory? */ |
| if (Z_SYSCALL_MEMORY_READ(src, size)) { |
| goto out_err; |
| } |
| |
| dst = z_thread_malloc(size); |
| if (dst == NULL) { |
| LOG_ERR("out of thread resource pool memory (%zu)", size); |
| goto out_err; |
| } |
| |
| (void)memcpy(dst, src, size); |
| out_err: |
| return dst; |
| } |
| |
| static int user_copy(void *dst, const void *src, size_t size, bool to_user) |
| { |
| int ret = EFAULT; |
| |
| /* Does the caller in user mode have access to this memory? */ |
| if (to_user ? Z_SYSCALL_MEMORY_WRITE(dst, size) : |
| Z_SYSCALL_MEMORY_READ(src, size)) { |
| goto out_err; |
| } |
| |
| (void)memcpy(dst, src, size); |
| ret = 0; |
| out_err: |
| return ret; |
| } |
| |
| int z_user_from_copy(void *dst, const void *src, size_t size) |
| { |
| return user_copy(dst, src, size, false); |
| } |
| |
| int z_user_to_copy(void *dst, const void *src, size_t size) |
| { |
| return user_copy(dst, src, size, true); |
| } |
| |
| char *z_user_string_alloc_copy(const char *src, size_t maxlen) |
| { |
| size_t actual_len; |
| int err; |
| char *ret = NULL; |
| |
| actual_len = z_user_string_nlen(src, maxlen, &err); |
| if (err != 0) { |
| goto out; |
| } |
| if (actual_len == maxlen) { |
| /* Not NULL terminated */ |
| LOG_ERR("string too long %p (%zu)", src, actual_len); |
| goto out; |
| } |
| if (size_add_overflow(actual_len, 1, &actual_len)) { |
| LOG_ERR("overflow"); |
| goto out; |
| } |
| |
| ret = z_user_alloc_from_copy(src, actual_len); |
| |
| /* Someone may have modified the source string during the above |
| * checks. Ensure what we actually copied is still terminated |
| * properly. |
| */ |
| if (ret != NULL) { |
| ret[actual_len - 1] = '\0'; |
| } |
| out: |
| return ret; |
| } |
| |
| int z_user_string_copy(char *dst, const char *src, size_t maxlen) |
| { |
| size_t actual_len; |
| int ret, err; |
| |
| actual_len = z_user_string_nlen(src, maxlen, &err); |
| if (err != 0) { |
| ret = EFAULT; |
| goto out; |
| } |
| if (actual_len == maxlen) { |
| /* Not NULL terminated */ |
| LOG_ERR("string too long %p (%zu)", src, actual_len); |
| ret = EINVAL; |
| goto out; |
| } |
| if (size_add_overflow(actual_len, 1, &actual_len)) { |
| LOG_ERR("overflow"); |
| ret = EINVAL; |
| goto out; |
| } |
| |
| ret = z_user_from_copy(dst, src, actual_len); |
| |
| /* See comment above in z_user_string_alloc_copy() */ |
| dst[actual_len - 1] = '\0'; |
| out: |
| return ret; |
| } |
| |
| /* |
| * Application memory region initialization |
| */ |
| |
| extern char __app_shmem_regions_start[]; |
| extern char __app_shmem_regions_end[]; |
| |
| void z_app_shmem_bss_zero(void) |
| { |
| struct z_app_region *region, *end; |
| |
| end = (struct z_app_region *)&__app_shmem_regions_end; |
| region = (struct z_app_region *)&__app_shmem_regions_start; |
| |
| for ( ; region < end; region++) { |
| (void)memset(region->bss_start, 0, region->bss_size); |
| } |
| } |
| |
| /* |
| * Default handlers if otherwise unimplemented |
| */ |
| |
| static u32_t handler_bad_syscall(u32_t bad_id, u32_t arg2, u32_t arg3, |
| u32_t arg4, u32_t arg5, u32_t arg6, void *ssf) |
| { |
| LOG_ERR("Bad system call id %u invoked", bad_id); |
| z_arch_syscall_oops(_current_cpu->syscall_frame); |
| CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
| } |
| |
| static u32_t handler_no_syscall(u32_t arg1, u32_t arg2, u32_t arg3, |
| u32_t arg4, u32_t arg5, u32_t arg6, void *ssf) |
| { |
| LOG_ERR("Unimplemented system call"); |
| z_arch_syscall_oops(_current_cpu->syscall_frame); |
| CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
| } |
| |
| #include <syscall_dispatch.c> |
| |