blob: f40fd892ec806f4fc9730d927aff19ff21d3c4e8 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pm_device, CONFIG_PM_DEVICE_LOG_LEVEL);
static const enum pm_device_state action_target_state[] = {
[PM_DEVICE_ACTION_SUSPEND] = PM_DEVICE_STATE_SUSPENDED,
[PM_DEVICE_ACTION_RESUME] = PM_DEVICE_STATE_ACTIVE,
[PM_DEVICE_ACTION_TURN_OFF] = PM_DEVICE_STATE_OFF,
[PM_DEVICE_ACTION_TURN_ON] = PM_DEVICE_STATE_SUSPENDED,
};
static const enum pm_device_state action_expected_state[] = {
[PM_DEVICE_ACTION_SUSPEND] = PM_DEVICE_STATE_ACTIVE,
[PM_DEVICE_ACTION_RESUME] = PM_DEVICE_STATE_SUSPENDED,
[PM_DEVICE_ACTION_TURN_OFF] = PM_DEVICE_STATE_SUSPENDED,
[PM_DEVICE_ACTION_TURN_ON] = PM_DEVICE_STATE_OFF,
};
const char *pm_device_state_str(enum pm_device_state state)
{
switch (state) {
case PM_DEVICE_STATE_ACTIVE:
return "active";
case PM_DEVICE_STATE_SUSPENDED:
return "suspended";
case PM_DEVICE_STATE_OFF:
return "off";
default:
return "";
}
}
int pm_device_action_run(const struct device *dev,
enum pm_device_action action)
{
struct pm_device *pm = dev->pm;
int ret;
if (pm == NULL) {
return -ENOSYS;
}
if (pm_device_state_is_locked(dev)) {
return -EPERM;
}
/* Validate action against current state */
if (pm->state == action_target_state[action]) {
return -EALREADY;
}
if (pm->state != action_expected_state[action]) {
return -ENOTSUP;
}
ret = pm->action_cb(dev, action);
if (ret < 0) {
/*
* TURN_ON and TURN_OFF are actions triggered by a power domain
* when it is resumed or suspended, which means that the energy
* to the device will be removed or added. For this reason, if
* the transition fails or the device does not handle these
* actions its state still needs to updated to reflect its
* physical behavior.
*
* The function will still return the error code so the domain
* can take whatever action is more appropriated.
*/
switch (action) {
case PM_DEVICE_ACTION_TURN_ON:
/* Store an error flag when the transition explicitly fails */
if (ret != -ENOTSUP) {
atomic_set_bit(&pm->flags, PM_DEVICE_FLAG_TURN_ON_FAILED);
}
__fallthrough;
case PM_DEVICE_ACTION_TURN_OFF:
pm->state = action_target_state[action];
break;
default:
break;
}
return ret;
}
pm->state = action_target_state[action];
/* Power up failure flag is no longer relevant */
if (action == PM_DEVICE_ACTION_TURN_OFF) {
atomic_clear_bit(&pm->flags, PM_DEVICE_FLAG_TURN_ON_FAILED);
}
return 0;
}
static int power_domain_add_or_remove(const struct device *dev,
const struct device *domain,
bool add)
{
#if defined(CONFIG_HAS_DYNAMIC_DEVICE_HANDLES)
device_handle_t *rv = domain->handles;
device_handle_t dev_handle = -1;
extern const struct device __device_start[];
extern const struct device __device_end[];
size_t i, region = 0;
size_t numdev = __device_end - __device_start;
/*
* Supported devices are stored as device handle and not
* device pointers. So, it is necessary to find what is
* the handle associated to the given device.
*/
for (i = 0; i < numdev; i++) {
if (&__device_start[i] == dev) {
dev_handle = i + 1;
break;
}
}
/*
* The last part is to find an available slot in the
* supported section of handles array and replace it
* with the device handle.
*/
while (region != 2) {
if (*rv == DEVICE_HANDLE_SEP) {
region++;
}
rv++;
}
i = 0;
while (rv[i] != DEVICE_HANDLE_ENDS) {
if (add == false) {
if (rv[i] == dev_handle) {
dev->pm->domain = NULL;
rv[i] = DEVICE_HANDLE_NULL;
return 0;
}
} else {
if (rv[i] == DEVICE_HANDLE_NULL) {
dev->pm->domain = domain;
rv[i] = dev_handle;
return 0;
}
}
++i;
}
return add ? -ENOSPC : -ENOENT;
#else
ARG_UNUSED(dev);
ARG_UNUSED(domain);
ARG_UNUSED(add);
return -ENOSYS;
#endif
}
int pm_device_power_domain_remove(const struct device *dev,
const struct device *domain)
{
return power_domain_add_or_remove(dev, domain, false);
}
int pm_device_power_domain_add(const struct device *dev,
const struct device *domain)
{
return power_domain_add_or_remove(dev, domain, true);
}
void pm_device_children_action_run(const struct device *dev,
enum pm_device_action action,
pm_device_action_failed_cb_t failure_cb)
{
const device_handle_t *handles;
size_t handle_count = 0U;
int rc = 0;
/*
* We don't use device_supported_foreach here because we don't want the
* early exit behaviour of that function. Even if the N'th device fails
* to PM_DEVICE_ACTION_TURN_ON for example, we still want to run the
* action on the N+1'th device.
*/
handles = device_supported_handles_get(dev, &handle_count);
for (size_t i = 0U; i < handle_count; ++i) {
device_handle_t dh = handles[i];
const struct device *cdev = device_from_handle(dh);
if (cdev == NULL) {
continue;
}
rc = pm_device_action_run(cdev, action);
if ((failure_cb != NULL) && (rc < 0)) {
/* Stop the iteration if the callback requests it */
if (!failure_cb(cdev, rc)) {
break;
}
}
}
}
int pm_device_state_get(const struct device *dev,
enum pm_device_state *state)
{
struct pm_device *pm = dev->pm;
if (pm == NULL) {
return -ENOSYS;
}
*state = pm->state;
return 0;
}
bool pm_device_is_any_busy(void)
{
const struct device *devs;
size_t devc;
devc = z_device_get_all_static(&devs);
for (const struct device *dev = devs; dev < (devs + devc); dev++) {
struct pm_device *pm = dev->pm;
if (pm == NULL) {
continue;
}
if (atomic_test_bit(&pm->flags, PM_DEVICE_FLAG_BUSY)) {
return true;
}
}
return false;
}
bool pm_device_is_busy(const struct device *dev)
{
struct pm_device *pm = dev->pm;
if (pm == NULL) {
return false;
}
return atomic_test_bit(&pm->flags, PM_DEVICE_FLAG_BUSY);
}
void pm_device_busy_set(const struct device *dev)
{
struct pm_device *pm = dev->pm;
if (pm == NULL) {
return;
}
atomic_set_bit(&pm->flags, PM_DEVICE_FLAG_BUSY);
}
void pm_device_busy_clear(const struct device *dev)
{
struct pm_device *pm = dev->pm;
if (pm == NULL) {
return;
}
atomic_clear_bit(&pm->flags, PM_DEVICE_FLAG_BUSY);
}
bool pm_device_wakeup_enable(const struct device *dev, bool enable)
{
atomic_val_t flags, new_flags;
struct pm_device *pm = dev->pm;
if (pm == NULL) {
return false;
}
flags = atomic_get(&pm->flags);
if ((flags & BIT(PM_DEVICE_FLAG_WS_CAPABLE)) == 0U) {
return false;
}
if (enable) {
new_flags = flags |
BIT(PM_DEVICE_FLAG_WS_ENABLED);
} else {
new_flags = flags & ~BIT(PM_DEVICE_FLAG_WS_ENABLED);
}
return atomic_cas(&pm->flags, flags, new_flags);
}
bool pm_device_wakeup_is_enabled(const struct device *dev)
{
struct pm_device *pm = dev->pm;
if (pm == NULL) {
return false;
}
return atomic_test_bit(&pm->flags,
PM_DEVICE_FLAG_WS_ENABLED);
}
bool pm_device_wakeup_is_capable(const struct device *dev)
{
struct pm_device *pm = dev->pm;
if (pm == NULL) {
return false;
}
return atomic_test_bit(&pm->flags,
PM_DEVICE_FLAG_WS_CAPABLE);
}
void pm_device_state_lock(const struct device *dev)
{
struct pm_device *pm = dev->pm;
if ((pm != NULL) && !pm_device_runtime_is_enabled(dev)) {
atomic_set_bit(&pm->flags, PM_DEVICE_FLAG_STATE_LOCKED);
}
}
void pm_device_state_unlock(const struct device *dev)
{
struct pm_device *pm = dev->pm;
if (pm != NULL) {
atomic_clear_bit(&pm->flags, PM_DEVICE_FLAG_STATE_LOCKED);
}
}
bool pm_device_state_is_locked(const struct device *dev)
{
struct pm_device *pm = dev->pm;
if (pm == NULL) {
return false;
}
return atomic_test_bit(&pm->flags,
PM_DEVICE_FLAG_STATE_LOCKED);
}
bool pm_device_on_power_domain(const struct device *dev)
{
#ifdef CONFIG_PM_DEVICE_POWER_DOMAIN
struct pm_device *pm = dev->pm;
if (pm == NULL) {
return false;
}
return pm->domain != NULL;
#else
return false;
#endif
}
bool pm_device_is_powered(const struct device *dev)
{
#ifdef CONFIG_PM_DEVICE_POWER_DOMAIN
struct pm_device *pm = dev->pm;
/* If a device doesn't support PM or is not under a PM domain,
* assume it is always powered on.
*/
return (pm == NULL) ||
(pm->domain == NULL) ||
(pm->domain->pm->state == PM_DEVICE_STATE_ACTIVE);
#else
return true;
#endif
}