blob: 7820f823eb0cb8af3df22364f96903216e6bc958 [file] [log] [blame]
/*
* Copyright (c) 2018 Friedt Professional Engineering Services, Inc
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <stdint.h>
#include <time.h>
#include <zephyr/sys_clock.h>
#include <zephyr/ztest.h>
#define SELECT_NANOSLEEP 1
#define SELECT_CLOCK_NANOSLEEP 0
static inline int select_nanosleep(int selection, clockid_t clock_id, int flags,
const struct timespec *rqtp, struct timespec *rmtp)
{
if (selection == SELECT_NANOSLEEP) {
return nanosleep(rqtp, rmtp);
}
return clock_nanosleep(clock_id, flags, rqtp, rmtp);
}
static inline uint64_t cycle_get_64(void)
{
if (IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
return k_cycle_get_64();
} else {
return k_cycle_get_32();
}
}
static void common_errors(int selection, clockid_t clock_id, int flags)
{
struct timespec rem = {};
struct timespec req = {};
/*
* invalid parameters
*/
zassert_equal(select_nanosleep(selection, clock_id, flags, NULL, NULL), -1);
zassert_equal(errno, EFAULT);
/* NULL request */
errno = 0;
zassert_equal(select_nanosleep(selection, clock_id, flags, NULL, &rem), -1);
zassert_equal(errno, EFAULT);
/* Expect rem to be the same when function returns */
zassert_equal(rem.tv_sec, 0, "actual: %d expected: %d", rem.tv_sec, 0);
zassert_equal(rem.tv_nsec, 0, "actual: %d expected: %d", rem.tv_nsec, 0);
/* negative times */
errno = 0;
req = (struct timespec){.tv_sec = -1, .tv_nsec = 0};
zassert_equal(select_nanosleep(selection, clock_id, flags, &req, NULL), -1);
zassert_equal(errno, EINVAL);
errno = 0;
req = (struct timespec){.tv_sec = 0, .tv_nsec = -1};
zassert_equal(select_nanosleep(selection, clock_id, flags, &req, NULL), -1);
zassert_equal(errno, EINVAL);
errno = 0;
req = (struct timespec){.tv_sec = -1, .tv_nsec = -1};
zassert_equal(select_nanosleep(selection, clock_id, flags, &req, NULL), -1);
zassert_equal(errno, EINVAL);
/* nanoseconds too high */
errno = 0;
req = (struct timespec){.tv_sec = 0, .tv_nsec = 1000000000};
zassert_equal(select_nanosleep(selection, clock_id, flags, &req, NULL), -1);
zassert_equal(errno, EINVAL);
/*
* Valid parameters
*/
errno = 0;
/* Happy path, plus make sure the const input is unmodified */
req = (struct timespec){.tv_sec = 1, .tv_nsec = 1};
zassert_equal(select_nanosleep(selection, clock_id, flags, &req, NULL), 0);
zassert_equal(errno, 0);
zassert_equal(req.tv_sec, 1);
zassert_equal(req.tv_nsec, 1);
/* Sleep for 0.0 s. Expect req & rem to be the same when function returns */
zassert_equal(select_nanosleep(selection, clock_id, flags, &req, &rem), 0);
zassert_equal(errno, 0);
zassert_equal(rem.tv_sec, 0, "actual: %d expected: %d", rem.tv_sec, 0);
zassert_equal(rem.tv_nsec, 0, "actual: %d expected: %d", rem.tv_nsec, 0);
/*
* req and rem point to the same timespec
*
* Normative spec says they may be the same.
* Expect rem to be zero after returning.
*/
req = (struct timespec){.tv_sec = 0, .tv_nsec = 1};
zassert_equal(select_nanosleep(selection, clock_id, flags, &req, &req), 0);
zassert_equal(errno, 0);
zassert_equal(req.tv_sec, 0, "actual: %d expected: %d", req.tv_sec, 0);
zassert_equal(req.tv_nsec, 0, "actual: %d expected: %d", req.tv_nsec, 0);
}
ZTEST(posix_apis, test_nanosleep_errors_errno)
{
common_errors(SELECT_NANOSLEEP, CLOCK_REALTIME, 0);
}
ZTEST(posix_apis, test_clock_nanosleep_errors_errno)
{
struct timespec rem = {};
struct timespec req = {};
common_errors(SELECT_CLOCK_NANOSLEEP, CLOCK_MONOTONIC, TIMER_ABSTIME);
/* Absolute timeout in the past. */
clock_gettime(CLOCK_MONOTONIC, &req);
zassert_equal(clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &req, &rem), 0);
zassert_equal(rem.tv_sec, 0, "actual: %d expected: %d", rem.tv_sec, 0);
zassert_equal(rem.tv_nsec, 0, "actual: %d expected: %d", rem.tv_nsec, 0);
/* Absolute timeout in the past relative to the realtime clock. */
clock_gettime(CLOCK_REALTIME, &req);
zassert_equal(clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &req, &rem), 0);
zassert_equal(rem.tv_sec, 0, "actual: %d expected: %d", rem.tv_sec, 0);
zassert_equal(rem.tv_nsec, 0, "actual: %d expected: %d", rem.tv_nsec, 0);
}
/**
* @brief Check that a call to nanosleep has yielded executiuon for some minimum time.
*
* Check that the actual time slept is >= the total time specified by @p s (in seconds) and
* @p ns (in nanoseconds).
*
* @note The time specified by @p s and @p ns is assumed to be absolute (i.e. a time-point)
* when @p selection is set to @ref SELECT_CLOCK_NANOSLEEP. The time is assumed to be relative
* when @p selection is set to @ref SELECT_NANOSLEEP.
*
* @param selection Either @ref SELECT_CLOCK_NANOSLEEP or @ref SELECT_NANOSLEEP
* @param clock_id The clock to test (e.g. @ref CLOCK_MONOTONIC or @ref CLOCK_REALTIME)
* @param flags Flags to pass to @ref clock_nanosleep
* @param s Partial lower bound for yielded time (in seconds)
* @param ns Partial lower bound for yielded time (in nanoseconds)
*/
static void common_lower_bound_check(int selection, clockid_t clock_id, int flags, const uint32_t s,
uint32_t ns)
{
int r;
uint64_t actual_ns;
uint64_t exp_ns;
uint64_t now;
uint64_t then;
struct timespec rem = {0, 0};
struct timespec req = {s, ns};
errno = 0;
then = cycle_get_64();
r = select_nanosleep(selection, clock_id, flags, &req, &rem);
now = cycle_get_64();
zassert_equal(r, 0, "actual: %d expected: %d", r, 0);
zassert_equal(errno, 0, "actual: %d expected: %d", errno, 0);
zassert_equal(req.tv_sec, s, "actual: %d expected: %d", req.tv_sec, s);
zassert_equal(req.tv_nsec, ns, "actual: %d expected: %d", req.tv_nsec, ns);
zassert_equal(rem.tv_sec, 0, "actual: %d expected: %d", rem.tv_sec, 0);
zassert_equal(rem.tv_nsec, 0, "actual: %d expected: %d", rem.tv_nsec, 0);
switch (selection) {
case SELECT_NANOSLEEP:
/* exp_ns and actual_ns are relative (i.e. durations) */
actual_ns = k_cyc_to_ns_ceil64(now + then);
break;
case SELECT_CLOCK_NANOSLEEP:
/* exp_ns and actual_ns are absolute (i.e. time-points) */
actual_ns = k_cyc_to_ns_ceil64(now);
break;
default:
zassert_unreachable();
break;
}
exp_ns = (uint64_t)s * NSEC_PER_SEC + ns;
/* round up to the nearest microsecond for k_busy_wait() */
exp_ns = DIV_ROUND_UP(exp_ns, NSEC_PER_USEC) * NSEC_PER_USEC;
/* The comparison may be incorrect if counter wrap happened. In case of ARC HSDK platforms
* we have high counter clock frequency (500MHz or 1GHz) so counter wrap quite likely to
* happen if we wait long enough. As in some test cases we wait more than 1 second, there
* are significant chances to get false-positive assertion.
* TODO: switch test for k_cycle_get_64 usage where available.
*/
#if !defined(CONFIG_SOC_ARC_HSDK) && !defined(CONFIG_SOC_ARC_HSDK4XD)
/* lower bounds check */
zassert_true(actual_ns >= exp_ns, "actual: %llu expected: %llu", actual_ns, exp_ns);
#endif
/* TODO: Upper bounds check when hr timers are available */
}
ZTEST(posix_apis, test_nanosleep_execution)
{
/* sleep for 1ns */
common_lower_bound_check(SELECT_NANOSLEEP, 0, 0, 0, 1);
/* sleep for 1us + 1ns */
common_lower_bound_check(SELECT_NANOSLEEP, 0, 0, 0, 1001);
/* sleep for 500000000ns */
common_lower_bound_check(SELECT_NANOSLEEP, 0, 0, 0, 500000000);
/* sleep for 1s */
common_lower_bound_check(SELECT_NANOSLEEP, 0, 0, 1, 0);
/* sleep for 1s + 1ns */
common_lower_bound_check(SELECT_NANOSLEEP, 0, 0, 1, 1);
/* sleep for 1s + 1us + 1ns */
common_lower_bound_check(SELECT_NANOSLEEP, 0, 0, 1, 1001);
}
ZTEST(posix_apis, test_clock_nanosleep_execution)
{
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
/* absolute sleeps with the monotonic clock and reference time ts */
/* until 1s + 1ns past the reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_MONOTONIC, TIMER_ABSTIME,
ts.tv_sec + 1, 1);
/* until 1s + 1us past the reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_MONOTONIC, TIMER_ABSTIME,
ts.tv_sec + 1, 1000);
/* until 1s + 500000000ns past the reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_MONOTONIC, TIMER_ABSTIME,
ts.tv_sec + 1, 500000000);
/* until 2s past the reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_MONOTONIC, TIMER_ABSTIME,
ts.tv_sec + 2, 0);
/* until 2s + 1ns past the reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_MONOTONIC, TIMER_ABSTIME,
ts.tv_sec + 2, 1);
/* until 2s + 1us + 1ns past reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_MONOTONIC, TIMER_ABSTIME,
ts.tv_sec + 2, 1001);
clock_gettime(CLOCK_REALTIME, &ts);
/* absolute sleeps with the real time clock and adjusted reference time ts */
/* until 1s + 1ns past the reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_REALTIME, TIMER_ABSTIME,
ts.tv_sec + 1, 1);
/* until 1s + 1us past the reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_REALTIME, TIMER_ABSTIME,
ts.tv_sec + 1, 1000);
/* until 1s + 500000000ns past the reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_REALTIME, TIMER_ABSTIME,
ts.tv_sec + 1, 500000000);
/* until 2s past the reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_REALTIME, TIMER_ABSTIME,
ts.tv_sec + 2, 0);
/* until 2s + 1ns past the reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_REALTIME, TIMER_ABSTIME,
ts.tv_sec + 2, 1);
/* until 2s + 1us + 1ns past the reference time */
common_lower_bound_check(SELECT_CLOCK_NANOSLEEP, CLOCK_REALTIME, TIMER_ABSTIME,
ts.tv_sec + 2, 1001);
}