blob: 412214c7f322410e08876073feb210477e65b88c [file] [log] [blame]
/* h4.c - H:4 UART based Bluetooth driver */
/*
* Copyright (c) 2015-2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <stddef.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/init.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/byteorder.h>
#include <string.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/drivers/bluetooth.h>
#define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(bt_driver);
#include "common/bt_str.h"
#include "../util.h"
#define DT_DRV_COMPAT zephyr_bt_hci_uart
struct h4_data {
struct {
struct net_buf *buf;
struct k_fifo fifo;
uint16_t remaining;
uint16_t discard;
bool have_hdr;
bool discardable;
uint8_t hdr_len;
uint8_t type;
union {
struct bt_hci_evt_hdr evt;
struct bt_hci_acl_hdr acl;
struct bt_hci_iso_hdr iso;
uint8_t hdr[4];
};
} rx;
struct {
uint8_t type;
struct net_buf *buf;
struct k_fifo fifo;
} tx;
bt_hci_recv_t recv;
};
struct h4_config {
const struct device *uart;
k_thread_stack_t *rx_thread_stack;
size_t rx_thread_stack_size;
struct k_thread *rx_thread;
};
static inline void h4_get_type(const struct device *dev)
{
const struct h4_config *cfg = dev->config;
struct h4_data *h4 = dev->data;
/* Get packet type */
if (uart_fifo_read(cfg->uart, &h4->rx.type, 1) != 1) {
LOG_WRN("Unable to read H:4 packet type");
h4->rx.type = BT_HCI_H4_NONE;
return;
}
switch (h4->rx.type) {
case BT_HCI_H4_EVT:
h4->rx.remaining = sizeof(h4->rx.evt);
h4->rx.hdr_len = h4->rx.remaining;
break;
case BT_HCI_H4_ACL:
h4->rx.remaining = sizeof(h4->rx.acl);
h4->rx.hdr_len = h4->rx.remaining;
break;
case BT_HCI_H4_ISO:
if (IS_ENABLED(CONFIG_BT_ISO)) {
h4->rx.remaining = sizeof(h4->rx.iso);
h4->rx.hdr_len = h4->rx.remaining;
break;
}
__fallthrough;
default:
LOG_ERR("Unknown H:4 type 0x%02x", h4->rx.type);
h4->rx.type = BT_HCI_H4_NONE;
}
}
static void h4_read_hdr(const struct device *dev)
{
const struct h4_config *cfg = dev->config;
struct h4_data *h4 = dev->data;
int bytes_read = h4->rx.hdr_len - h4->rx.remaining;
int ret;
ret = uart_fifo_read(cfg->uart, h4->rx.hdr + bytes_read, h4->rx.remaining);
if (unlikely(ret < 0)) {
LOG_ERR("Unable to read from UART (ret %d)", ret);
} else {
h4->rx.remaining -= ret;
}
}
static inline void get_acl_hdr(const struct device *dev)
{
struct h4_data *h4 = dev->data;
h4_read_hdr(dev);
if (!h4->rx.remaining) {
struct bt_hci_acl_hdr *hdr = &h4->rx.acl;
h4->rx.remaining = sys_le16_to_cpu(hdr->len);
LOG_DBG("Got ACL header. Payload %u bytes", h4->rx.remaining);
h4->rx.have_hdr = true;
}
}
static inline void get_iso_hdr(const struct device *dev)
{
struct h4_data *h4 = dev->data;
h4_read_hdr(dev);
if (!h4->rx.remaining) {
struct bt_hci_iso_hdr *hdr = &h4->rx.iso;
h4->rx.remaining = bt_iso_hdr_len(sys_le16_to_cpu(hdr->len));
LOG_DBG("Got ISO header. Payload %u bytes", h4->rx.remaining);
h4->rx.have_hdr = true;
}
}
static inline void get_evt_hdr(const struct device *dev)
{
struct h4_data *h4 = dev->data;
struct bt_hci_evt_hdr *hdr = &h4->rx.evt;
h4_read_hdr(dev);
if (h4->rx.hdr_len == sizeof(*hdr) && h4->rx.remaining < sizeof(*hdr)) {
switch (h4->rx.evt.evt) {
case BT_HCI_EVT_LE_META_EVENT:
h4->rx.remaining++;
h4->rx.hdr_len++;
break;
#if defined(CONFIG_BT_CLASSIC)
case BT_HCI_EVT_INQUIRY_RESULT_WITH_RSSI:
case BT_HCI_EVT_EXTENDED_INQUIRY_RESULT:
h4->rx.discardable = true;
break;
#endif
}
}
if (!h4->rx.remaining) {
if (h4->rx.evt.evt == BT_HCI_EVT_LE_META_EVENT &&
(h4->rx.hdr[sizeof(*hdr)] == BT_HCI_EVT_LE_ADVERTISING_REPORT)) {
LOG_DBG("Marking adv report as discardable");
h4->rx.discardable = true;
}
h4->rx.remaining = hdr->len - (h4->rx.hdr_len - sizeof(*hdr));
LOG_DBG("Got event header. Payload %u bytes", hdr->len);
h4->rx.have_hdr = true;
}
}
static inline void copy_hdr(struct h4_data *h4)
{
net_buf_add_mem(h4->rx.buf, h4->rx.hdr, h4->rx.hdr_len);
}
static void reset_rx(struct h4_data *h4)
{
h4->rx.type = BT_HCI_H4_NONE;
h4->rx.remaining = 0U;
h4->rx.have_hdr = false;
h4->rx.hdr_len = 0U;
h4->rx.discardable = false;
}
static struct net_buf *get_rx(struct h4_data *h4, k_timeout_t timeout)
{
LOG_DBG("type 0x%02x, evt 0x%02x", h4->rx.type, h4->rx.evt.evt);
switch (h4->rx.type) {
case BT_HCI_H4_EVT:
return bt_buf_get_evt(h4->rx.evt.evt, h4->rx.discardable, timeout);
case BT_HCI_H4_ACL:
return bt_buf_get_rx(BT_BUF_ACL_IN, timeout);
case BT_HCI_H4_ISO:
if (IS_ENABLED(CONFIG_BT_ISO)) {
return bt_buf_get_rx(BT_BUF_ISO_IN, timeout);
}
}
return NULL;
}
static void rx_thread(void *p1, void *p2, void *p3)
{
const struct device *dev = p1;
const struct h4_config *cfg = dev->config;
struct h4_data *h4 = dev->data;
struct net_buf *buf;
ARG_UNUSED(p2);
ARG_UNUSED(p3);
LOG_DBG("started");
while (1) {
LOG_DBG("rx.buf %p", h4->rx.buf);
/* We can only do the allocation if we know the initial
* header, since Command Complete/Status events must use the
* original command buffer (if available).
*/
if (h4->rx.have_hdr && !h4->rx.buf) {
h4->rx.buf = get_rx(h4, K_FOREVER);
LOG_DBG("Got rx.buf %p", h4->rx.buf);
if (h4->rx.remaining > net_buf_tailroom(h4->rx.buf)) {
LOG_ERR("Not enough space in buffer");
h4->rx.discard = h4->rx.remaining;
reset_rx(h4);
} else {
copy_hdr(h4);
}
}
/* Let the ISR continue receiving new packets */
uart_irq_rx_enable(cfg->uart);
buf = net_buf_get(&h4->rx.fifo, K_FOREVER);
do {
uart_irq_rx_enable(cfg->uart);
LOG_DBG("Calling bt_recv(%p)", buf);
h4->recv(dev, buf);
/* Give other threads a chance to run if the ISR
* is receiving data so fast that rx.fifo never
* or very rarely goes empty.
*/
k_yield();
uart_irq_rx_disable(cfg->uart);
buf = net_buf_get(&h4->rx.fifo, K_NO_WAIT);
} while (buf);
}
}
static size_t h4_discard(const struct device *uart, size_t len)
{
uint8_t buf[33];
int err;
err = uart_fifo_read(uart, buf, MIN(len, sizeof(buf)));
if (unlikely(err < 0)) {
LOG_ERR("Unable to read from UART (err %d)", err);
return 0;
}
return err;
}
static inline void read_payload(const struct device *dev)
{
const struct h4_config *cfg = dev->config;
struct h4_data *h4 = dev->data;
struct net_buf *buf;
int read;
if (!h4->rx.buf) {
size_t buf_tailroom;
h4->rx.buf = get_rx(h4, K_NO_WAIT);
if (!h4->rx.buf) {
if (h4->rx.discardable) {
LOG_WRN("Discarding event 0x%02x", h4->rx.evt.evt);
h4->rx.discard = h4->rx.remaining;
reset_rx(h4);
return;
}
LOG_WRN("Failed to allocate, deferring to rx_thread");
uart_irq_rx_disable(cfg->uart);
return;
}
LOG_DBG("Allocated rx.buf %p", h4->rx.buf);
buf_tailroom = net_buf_tailroom(h4->rx.buf);
if (buf_tailroom < h4->rx.remaining) {
LOG_ERR("Not enough space in buffer %u/%zu", h4->rx.remaining,
buf_tailroom);
h4->rx.discard = h4->rx.remaining;
reset_rx(h4);
return;
}
copy_hdr(h4);
}
read = uart_fifo_read(cfg->uart, net_buf_tail(h4->rx.buf), h4->rx.remaining);
if (unlikely(read < 0)) {
LOG_ERR("Failed to read UART (err %d)", read);
return;
}
net_buf_add(h4->rx.buf, read);
h4->rx.remaining -= read;
LOG_DBG("got %d bytes, remaining %u", read, h4->rx.remaining);
LOG_DBG("Payload (len %u): %s", h4->rx.buf->len,
bt_hex(h4->rx.buf->data, h4->rx.buf->len));
if (h4->rx.remaining) {
return;
}
buf = h4->rx.buf;
h4->rx.buf = NULL;
if (h4->rx.type == BT_HCI_H4_EVT) {
bt_buf_set_type(buf, BT_BUF_EVT);
} else {
bt_buf_set_type(buf, BT_BUF_ACL_IN);
}
reset_rx(h4);
LOG_DBG("Putting buf %p to rx fifo", buf);
net_buf_put(&h4->rx.fifo, buf);
}
static inline void read_header(const struct device *dev)
{
struct h4_data *h4 = dev->data;
switch (h4->rx.type) {
case BT_HCI_H4_NONE:
h4_get_type(dev);
return;
case BT_HCI_H4_EVT:
get_evt_hdr(dev);
break;
case BT_HCI_H4_ACL:
get_acl_hdr(dev);
break;
case BT_HCI_H4_ISO:
if (IS_ENABLED(CONFIG_BT_ISO)) {
get_iso_hdr(dev);
break;
}
__fallthrough;
default:
CODE_UNREACHABLE;
return;
}
if (h4->rx.have_hdr && h4->rx.buf) {
if (h4->rx.remaining > net_buf_tailroom(h4->rx.buf)) {
LOG_ERR("Not enough space in buffer");
h4->rx.discard = h4->rx.remaining;
reset_rx(h4);
} else {
copy_hdr(h4);
}
}
}
static inline void process_tx(const struct device *dev)
{
const struct h4_config *cfg = dev->config;
struct h4_data *h4 = dev->data;
int bytes;
if (!h4->tx.buf) {
h4->tx.buf = net_buf_get(&h4->tx.fifo, K_NO_WAIT);
if (!h4->tx.buf) {
LOG_ERR("TX interrupt but no pending buffer!");
uart_irq_tx_disable(cfg->uart);
return;
}
}
if (!h4->tx.type) {
switch (bt_buf_get_type(h4->tx.buf)) {
case BT_BUF_ACL_OUT:
h4->tx.type = BT_HCI_H4_ACL;
break;
case BT_BUF_CMD:
h4->tx.type = BT_HCI_H4_CMD;
break;
case BT_BUF_ISO_OUT:
if (IS_ENABLED(CONFIG_BT_ISO)) {
h4->tx.type = BT_HCI_H4_ISO;
break;
}
__fallthrough;
default:
LOG_ERR("Unknown buffer type");
goto done;
}
bytes = uart_fifo_fill(cfg->uart, &h4->tx.type, 1);
if (bytes != 1) {
LOG_WRN("Unable to send H:4 type");
h4->tx.type = BT_HCI_H4_NONE;
return;
}
}
bytes = uart_fifo_fill(cfg->uart, h4->tx.buf->data, h4->tx.buf->len);
if (unlikely(bytes < 0)) {
LOG_ERR("Unable to write to UART (err %d)", bytes);
} else {
net_buf_pull(h4->tx.buf, bytes);
}
if (h4->tx.buf->len) {
return;
}
done:
h4->tx.type = BT_HCI_H4_NONE;
net_buf_unref(h4->tx.buf);
h4->tx.buf = net_buf_get(&h4->tx.fifo, K_NO_WAIT);
if (!h4->tx.buf) {
uart_irq_tx_disable(cfg->uart);
}
}
static inline void process_rx(const struct device *dev)
{
const struct h4_config *cfg = dev->config;
struct h4_data *h4 = dev->data;
LOG_DBG("remaining %u discard %u have_hdr %u rx.buf %p len %u",
h4->rx.remaining, h4->rx.discard, h4->rx.have_hdr, h4->rx.buf,
h4->rx.buf ? h4->rx.buf->len : 0);
if (h4->rx.discard) {
h4->rx.discard -= h4_discard(cfg->uart, h4->rx.discard);
return;
}
if (h4->rx.have_hdr) {
read_payload(dev);
} else {
read_header(dev);
}
}
static void bt_uart_isr(const struct device *uart, void *user_data)
{
struct device *dev = user_data;
while (uart_irq_update(uart) && uart_irq_is_pending(uart)) {
if (uart_irq_tx_ready(uart)) {
process_tx(dev);
}
if (uart_irq_rx_ready(uart)) {
process_rx(dev);
}
}
}
static int h4_send(const struct device *dev, struct net_buf *buf)
{
const struct h4_config *cfg = dev->config;
struct h4_data *h4 = dev->data;
LOG_DBG("buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len);
net_buf_put(&h4->tx.fifo, buf);
uart_irq_tx_enable(cfg->uart);
return 0;
}
/** Setup the HCI transport, which usually means to reset the Bluetooth IC
*
* @param dev The device structure for the bus connecting to the IC
*
* @return 0 on success, negative error value on failure
*/
int __weak bt_hci_transport_setup(const struct device *uart)
{
h4_discard(uart, 32);
return 0;
}
static int h4_open(const struct device *dev, bt_hci_recv_t recv)
{
const struct h4_config *cfg = dev->config;
struct h4_data *h4 = dev->data;
int ret;
k_tid_t tid;
LOG_DBG("");
uart_irq_rx_disable(cfg->uart);
uart_irq_tx_disable(cfg->uart);
ret = bt_hci_transport_setup(cfg->uart);
if (ret < 0) {
return -EIO;
}
h4->recv = recv;
uart_irq_callback_user_data_set(cfg->uart, bt_uart_isr, (void *)dev);
tid = k_thread_create(cfg->rx_thread, cfg->rx_thread_stack,
cfg->rx_thread_stack_size,
rx_thread, (void *)dev, NULL, NULL,
K_PRIO_COOP(CONFIG_BT_RX_PRIO),
0, K_NO_WAIT);
k_thread_name_set(tid, "bt_rx_thread");
return 0;
}
#if defined(CONFIG_BT_HCI_SETUP)
static int h4_setup(const struct device *dev, const struct bt_hci_setup_params *params)
{
const struct h4_config *cfg = dev->config;
ARG_UNUSED(params);
/* Extern bt_h4_vnd_setup function.
* This function executes vendor-specific commands sequence to
* initialize BT Controller before BT Host executes Reset sequence.
* bt_h4_vnd_setup function must be implemented in vendor-specific HCI
* extansion module if CONFIG_BT_HCI_SETUP is enabled.
*/
extern int bt_h4_vnd_setup(const struct device *dev);
return bt_h4_vnd_setup(cfg->uart);
}
#endif
static const struct bt_hci_driver_api h4_driver_api = {
.open = h4_open,
.send = h4_send,
#if defined(CONFIG_BT_HCI_SETUP)
.setup = h4_setup,
#endif
};
#define BT_UART_DEVICE_INIT(inst) \
static K_KERNEL_STACK_DEFINE(rx_thread_stack_##inst, CONFIG_BT_DRV_RX_STACK_SIZE); \
static struct k_thread rx_thread_##inst; \
static const struct h4_config h4_config_##inst = { \
.uart = DEVICE_DT_GET(DT_INST_PARENT(inst)), \
.rx_thread_stack = rx_thread_stack_##inst, \
.rx_thread_stack_size = K_KERNEL_STACK_SIZEOF(rx_thread_stack_##inst), \
.rx_thread = &rx_thread_##inst, \
}; \
static struct h4_data h4_data_##inst = { \
.rx = { \
.fifo = Z_FIFO_INITIALIZER(h4_data_##inst.rx.fifo), \
}, \
.tx = { \
.fifo = Z_FIFO_INITIALIZER(h4_data_##inst.tx.fifo), \
}, \
}; \
DEVICE_DT_INST_DEFINE(inst, NULL, NULL, &h4_data_##inst, &h4_config_##inst, \
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &h4_driver_api)
DT_INST_FOREACH_STATUS_OKAY(BT_UART_DEVICE_INIT)