blob: 039a252b0c316ef2185af8b2bcd67d930e4fcaef [file] [log] [blame]
/** @file
* @brief Internal APIs for Bluetooth connection handling.
*/
/*
* Copyright (c) 2015 Intel Corporation
* Copyright (c) 2021 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/bluetooth/iso.h>
typedef enum __packed {
BT_CONN_DISCONNECTED, /* Disconnected, conn is completely down */
BT_CONN_DISCONNECT_COMPLETE, /* Received disconn comp event, transition to DISCONNECTED */
BT_CONN_INITIATING, /* Central connection establishment */
/** Central scans for a device preceding establishing a connection to it.
*
* This can happen when:
* - The application has explicitly configured the stack to connect to the device,
* but the controller resolving list is too small. The stack therefore first
* scans to be able to retrieve the currently used (private) address, resolving
* the address in the host if needed.
* - The stack uses this connection context for automatic connection establishment
* without the use of filter accept list. Instead of immediately starting
* the initiator, it first starts scanning. This allows the application to start
* scanning while automatic connection establishment in ongoing.
* It also allows the stack to use host based privacy for cases where this is needed.
*/
BT_CONN_SCAN_BEFORE_INITIATING,
/** Central initiates a connection to a device in the filter accept list.
*
* For this type of connection establishment, the controller's initiator is started
* immediately. That is, it is assumed that the controller resolving list
* holds all entries that are part of the filter accept list if private addresses are used.
*/
BT_CONN_INITIATING_FILTER_LIST,
BT_CONN_ADV_CONNECTABLE, /* Peripheral connectable advertising */
BT_CONN_ADV_DIR_CONNECTABLE, /* Peripheral directed advertising */
BT_CONN_CONNECTED, /* Peripheral or Central connected */
BT_CONN_DISCONNECTING, /* Peripheral or Central issued disconnection command */
} bt_conn_state_t;
/* bt_conn flags: the flags defined here represent connection parameters */
enum {
/** The connection context is used for automatic connection establishment
*
* That is, with @ref bt_conn_le_create_auto() or bt_le_set_auto_conn().
* This flag is set even after the connection has been established so
* that the connection can be reestablished once disconnected.
* The connection establishment may be performed with or without the filter
* accept list.
*/
BT_CONN_AUTO_CONNECT,
BT_CONN_BR_LEGACY_SECURE, /* 16 digits legacy PIN tracker */
BT_CONN_USER, /* user I/O when pairing */
BT_CONN_BR_PAIRING, /* BR connection in pairing context */
BT_CONN_BR_NOBOND, /* SSP no bond pairing tracker */
BT_CONN_BR_PAIRING_INITIATOR, /* local host starts authentication */
BT_CONN_CLEANUP, /* Disconnected, pending cleanup */
BT_CONN_PERIPHERAL_PARAM_UPDATE, /* If periph param update timer fired */
BT_CONN_PERIPHERAL_PARAM_AUTO_UPDATE, /* If periph param auto update on timer fired */
BT_CONN_PERIPHERAL_PARAM_SET, /* If periph param were set from app */
BT_CONN_PERIPHERAL_PARAM_L2CAP, /* If should force L2CAP for CPUP */
BT_CONN_FORCE_PAIR, /* Pairing even with existing keys. */
#if defined(CONFIG_BT_GATT_CLIENT)
BT_CONN_ATT_MTU_EXCHANGED, /* If ATT MTU has been exchanged. */
#endif /* CONFIG_BT_GATT_CLIENT */
BT_CONN_AUTO_FEATURE_EXCH, /* Auto-initiated LE Feat done */
BT_CONN_AUTO_VERSION_INFO, /* Auto-initiated LE version done */
BT_CONN_CTE_RX_ENABLED, /* CTE receive and sampling is enabled */
BT_CONN_CTE_RX_PARAMS_SET, /* CTE parameters are set */
BT_CONN_CTE_TX_PARAMS_SET, /* CTE transmission parameters are set */
BT_CONN_CTE_REQ_ENABLED, /* CTE request procedure is enabled */
BT_CONN_CTE_RSP_ENABLED, /* CTE response procedure is enabled */
/* Total number of flags - must be at the end of the enum */
BT_CONN_NUM_FLAGS,
};
struct bt_conn_le {
bt_addr_le_t dst;
bt_addr_le_t init_addr;
bt_addr_le_t resp_addr;
uint16_t interval;
uint16_t interval_min;
uint16_t interval_max;
uint16_t latency;
uint16_t timeout;
uint16_t pending_latency;
uint16_t pending_timeout;
#if defined(CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS)
uint8_t conn_param_retry_countdown;
#endif
uint8_t features[8];
struct bt_keys *keys;
#if defined(CONFIG_BT_USER_PHY_UPDATE)
struct bt_conn_le_phy_info phy;
#endif
#if defined(CONFIG_BT_USER_DATA_LEN_UPDATE)
struct bt_conn_le_data_len_info data_len;
#endif
};
#if defined(CONFIG_BT_CLASSIC)
/* For now reserve space for 2 pages of LMP remote features */
#define LMP_MAX_PAGES 2
struct bt_conn_br {
bt_addr_t dst;
uint8_t remote_io_capa;
uint8_t remote_auth;
uint8_t pairing_method;
/* remote LMP features pages per 8 bytes each */
uint8_t features[LMP_MAX_PAGES][8];
struct bt_keys_link_key *link_key;
};
struct bt_conn_sco {
/* Reference to ACL Connection */
struct bt_conn *acl;
/* Reference to the struct bt_sco_chan */
struct bt_sco_chan *chan;
uint16_t pkt_type;
uint8_t dev_class[3];
uint8_t link_type;
};
#endif
struct bt_conn_iso {
/* Reference to ACL Connection */
struct bt_conn *acl;
/* Reference to the struct bt_iso_chan */
struct bt_iso_chan *chan;
union {
/* CIG ID */
uint8_t cig_id;
/* BIG handle */
uint8_t big_handle;
};
union {
/* CIS ID within the CIG */
uint8_t cis_id;
/* BIS ID within the BIG*/
uint8_t bis_id;
};
/** Stored information about the ISO stream */
struct bt_iso_info info;
/** Queue from which conn will pull data */
struct k_fifo txq;
};
typedef void (*bt_conn_tx_cb_t)(struct bt_conn *conn, void *user_data, int err);
struct bt_conn_tx {
sys_snode_t node;
bt_conn_tx_cb_t cb;
void *user_data;
};
struct acl_data {
/* Extend the bt_buf user data */
struct bt_buf_data buf_data;
/* Index into the bt_conn storage array */
uint8_t index;
/** ACL connection handle */
uint16_t handle;
};
struct bt_conn {
uint16_t handle;
enum bt_conn_type type;
uint8_t role;
ATOMIC_DEFINE(flags, BT_CONN_NUM_FLAGS);
/* Which local identity address this connection uses */
uint8_t id;
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_CLASSIC)
bt_security_t sec_level;
bt_security_t required_sec_level;
uint8_t encrypt;
#endif /* CONFIG_BT_SMP || CONFIG_BT_CLASSIC */
#if defined(CONFIG_BT_DF_CONNECTION_CTE_RX)
/**
* @brief Bitfield with allowed CTE types.
*
* Allowed values are defined by @ref bt_df_cte_type, except BT_DF_CTE_TYPE_NONE.
*/
uint8_t cte_types;
#endif /* CONFIG_BT_DF_CONNECTION_CTE_RX */
/* Connection error or reason for disconnect */
uint8_t err;
bt_conn_state_t state;
uint16_t rx_len;
struct net_buf *rx;
/* Pending TX that are awaiting the NCP event. len(tx_pending) == in_ll */
sys_slist_t tx_pending;
/* Completed TX for which we need to call the callback */
sys_slist_t tx_complete;
#if defined(CONFIG_BT_CONN_TX)
struct k_work tx_complete_work;
#endif /* CONFIG_BT_CONN_TX */
/* Active L2CAP channels */
sys_slist_t channels;
/* Delayed work deferred tasks:
* - Peripheral delayed connection update.
* - Initiator connect create cancel.
* - Connection cleanup.
*/
struct k_work_delayable deferred_work;
union {
struct bt_conn_le le;
#if defined(CONFIG_BT_CLASSIC)
struct bt_conn_br br;
struct bt_conn_sco sco;
#endif
#if defined(CONFIG_BT_ISO)
struct bt_conn_iso iso;
#endif
};
#if defined(CONFIG_BT_REMOTE_VERSION)
struct bt_conn_rv {
uint8_t version;
uint16_t manufacturer;
uint16_t subversion;
} rv;
#endif
/* Callback into the higher-layers (L2CAP / ISO) to return a buffer for
* sending `amount` of bytes to HCI.
*
* Scheduling from which channel to pull (e.g. for L2CAP) is done at the
* upper layer's discretion.
*/
struct net_buf * (*tx_data_pull)(struct bt_conn *conn,
size_t amount,
size_t *length);
/* Get (and clears for ACL conns) callback and user-data for `buf`. */
void (*get_and_clear_cb)(struct bt_conn *conn, struct net_buf *buf,
bt_conn_tx_cb_t *cb, void **ud);
/* Return true if upper layer has data to send over HCI */
bool (*has_data)(struct bt_conn *conn);
/* For ACL: List of data-ready L2 channels. Used by TX processor for
* pulling HCI fragments. Channels are only ever removed from this list
* when a whole PDU (ie all its frags) have been sent.
*/
sys_slist_t l2cap_data_ready;
/* Node for putting this connection in a data-ready mode for the bt_dev.
* This will be used by the TX processor to then fetch HCI frags from it.
*/
sys_snode_t _conn_ready;
atomic_t _conn_ready_lock;
/* Holds the number of packets that have been sent to the controller but
* not yet ACKd (by receiving an Number of Completed Packets). This
* variable can be used for deriving a QoS or waterlevel scheme in order
* to maximize throughput/latency.
* It's an optimization so we don't chase `tx_pending` all the time.
*/
atomic_t in_ll;
/* Next buffer should be an ACL/ISO HCI fragment */
bool next_is_frag;
/* Must be at the end so that everything else in the structure can be
* memset to zero without affecting the ref.
*/
atomic_t ref;
};
/* Holds the callback and a user-data field for the upper layer. This callback
* shall be called when the buffer is ACK'd by the controller (by a Num Complete
* Packets event) or if the connection dies.
*
* Flow control in the spec be crazy, look it up. LL is allowed to choose
* between sending NCP events always or not at all on disconnect.
*
* We pack the struct to make sure it fits in the net_buf user_data field.
*/
struct closure {
void *cb;
void *data;
} __packed;
#if defined(CONFIG_BT_CONN_TX_USER_DATA_SIZE)
BUILD_ASSERT(sizeof(struct closure) < CONFIG_BT_CONN_TX_USER_DATA_SIZE);
#endif
static inline void make_closure(void *storage, void *cb, void *data)
{
((struct closure *)storage)->cb = cb;
((struct closure *)storage)->data = data;
}
static inline void *closure_cb(void *storage)
{
return ((struct closure *)storage)->cb;
}
static inline void *closure_data(void *storage)
{
return ((struct closure *)storage)->data;
}
void bt_conn_reset_rx_state(struct bt_conn *conn);
/* Process incoming data for a connection */
void bt_conn_recv(struct bt_conn *conn, struct net_buf *buf, uint8_t flags);
/* Send data over a connection
*
* Buffer ownership is transferred to stack in case of success.
*
* Calling this from RX thread is assumed to never fail so the return can be
* ignored.
*/
int bt_conn_send_cb(struct bt_conn *conn, struct net_buf *buf,
bt_conn_tx_cb_t cb, void *user_data);
/* Thin wrapper over `bt_conn_send_cb`
*
* Used to set the TS_Flag bit in `buf`'s metadata.
*
* Return values & buf ownership same as parent.
*/
int bt_conn_send_iso_cb(struct bt_conn *conn, struct net_buf *buf,
bt_conn_tx_cb_t cb, bool has_ts);
/* Check if a connection object with the peer already exists */
bool bt_conn_exists_le(uint8_t id, const bt_addr_le_t *peer);
/* Add a new LE connection */
struct bt_conn *bt_conn_add_le(uint8_t id, const bt_addr_le_t *peer);
/** Connection parameters for ISO connections */
struct bt_iso_create_param {
uint8_t id;
uint8_t num_conns;
struct bt_conn **conns;
struct bt_iso_chan **chans;
};
int bt_conn_iso_init(void);
/* Cleanup ISO references */
void bt_iso_cleanup_acl(struct bt_conn *iso_conn);
void bt_iso_reset(void);
/* Add a new BR/EDR connection */
struct bt_conn *bt_conn_add_br(const bt_addr_t *peer);
/* Add a new SCO connection */
struct bt_conn *bt_conn_add_sco(const bt_addr_t *peer, int link_type);
/* Cleanup SCO ACL reference */
void bt_sco_cleanup_acl(struct bt_conn *sco_conn);
/* Cleanup SCO references */
void bt_sco_cleanup(struct bt_conn *sco_conn);
/* Look up an existing sco connection by BT address */
struct bt_conn *bt_conn_lookup_addr_sco(const bt_addr_t *peer);
/* Look up an existing connection by BT address */
struct bt_conn *bt_conn_lookup_addr_br(const bt_addr_t *peer);
void bt_conn_disconnect_all(uint8_t id);
/* Allocate new connection object */
struct bt_conn *bt_conn_new(struct bt_conn *conns, size_t size);
/* Look up an existing connection */
struct bt_conn *bt_conn_lookup_handle(uint16_t handle, enum bt_conn_type type);
static inline bool bt_conn_is_handle_valid(struct bt_conn *conn)
{
switch (conn->state) {
case BT_CONN_CONNECTED:
case BT_CONN_DISCONNECTING:
case BT_CONN_DISCONNECT_COMPLETE:
return true;
case BT_CONN_INITIATING:
/* ISO connection handle assigned at connect state */
if (IS_ENABLED(CONFIG_BT_ISO) &&
conn->type == BT_CONN_TYPE_ISO) {
return true;
}
__fallthrough;
default:
return false;
}
}
/* Check if the connection is with the given peer. */
bool bt_conn_is_peer_addr_le(const struct bt_conn *conn, uint8_t id,
const bt_addr_le_t *peer);
/* Helpers for identifying & looking up connections based on the index to
* the connection list. This is useful for O(1) lookups, but can't be used
* e.g. as the handle since that's assigned to us by the controller.
*/
#define BT_CONN_INDEX_INVALID 0xff
struct bt_conn *bt_conn_lookup_index(uint8_t index);
/* Look up a connection state. For BT_ADDR_LE_ANY, returns the first connection
* with the specific state
*/
struct bt_conn *bt_conn_lookup_state_le(uint8_t id, const bt_addr_le_t *peer,
const bt_conn_state_t state);
/* Set connection object in certain state and perform action related to state */
void bt_conn_set_state(struct bt_conn *conn, bt_conn_state_t state);
void bt_conn_connected(struct bt_conn *conn);
int bt_conn_le_conn_update(struct bt_conn *conn,
const struct bt_le_conn_param *param);
void notify_remote_info(struct bt_conn *conn);
void notify_le_param_updated(struct bt_conn *conn);
void notify_le_data_len_updated(struct bt_conn *conn);
void notify_le_phy_updated(struct bt_conn *conn);
bool le_param_req(struct bt_conn *conn, struct bt_le_conn_param *param);
void notify_tx_power_report(struct bt_conn *conn,
struct bt_conn_le_tx_power_report report);
void notify_path_loss_threshold_report(struct bt_conn *conn,
struct bt_conn_le_path_loss_threshold_report report);
#if defined(CONFIG_BT_SMP)
/* If role specific LTK is present */
bool bt_conn_ltk_present(const struct bt_conn *conn);
/* rand and ediv should be in BT order */
int bt_conn_le_start_encryption(struct bt_conn *conn, uint8_t rand[8],
uint8_t ediv[2], const uint8_t *ltk, size_t len);
/* Notify higher layers that RPA was resolved */
void bt_conn_identity_resolved(struct bt_conn *conn);
#endif /* CONFIG_BT_SMP */
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_CLASSIC)
/* Notify higher layers that connection security changed */
void bt_conn_security_changed(struct bt_conn *conn, uint8_t hci_err,
enum bt_security_err err);
#endif /* CONFIG_BT_SMP || CONFIG_BT_CLASSIC */
/* Prepare a PDU to be sent over a connection */
#if defined(CONFIG_NET_BUF_LOG)
struct net_buf *bt_conn_create_pdu_timeout_debug(struct net_buf_pool *pool,
size_t reserve,
k_timeout_t timeout,
const char *func, int line);
#define bt_conn_create_pdu_timeout(_pool, _reserve, _timeout) \
bt_conn_create_pdu_timeout_debug(_pool, _reserve, _timeout, \
__func__, __LINE__)
#define bt_conn_create_pdu(_pool, _reserve) \
bt_conn_create_pdu_timeout_debug(_pool, _reserve, K_FOREVER, \
__func__, __LINE__)
#else
struct net_buf *bt_conn_create_pdu_timeout(struct net_buf_pool *pool,
size_t reserve, k_timeout_t timeout);
#define bt_conn_create_pdu(_pool, _reserve) \
bt_conn_create_pdu_timeout(_pool, _reserve, K_FOREVER)
#endif
/* Prepare a PDU to be sent over a connection */
#if defined(CONFIG_NET_BUF_LOG)
struct net_buf *bt_conn_create_frag_timeout_debug(size_t reserve,
k_timeout_t timeout,
const char *func, int line);
#define bt_conn_create_frag_timeout(_reserve, _timeout) \
bt_conn_create_frag_timeout_debug(_reserve, _timeout, \
__func__, __LINE__)
#define bt_conn_create_frag(_reserve) \
bt_conn_create_frag_timeout_debug(_reserve, K_FOREVER, \
__func__, __LINE__)
#else
struct net_buf *bt_conn_create_frag_timeout(size_t reserve,
k_timeout_t timeout);
#define bt_conn_create_frag(_reserve) \
bt_conn_create_frag_timeout(_reserve, K_FOREVER)
#endif
/* Initialize connection management */
int bt_conn_init(void);
/* Reset states of connections and set state to BT_CONN_DISCONNECTED. */
void bt_conn_cleanup_all(void);
/* Selects based on connection type right semaphore for ACL packets */
struct k_sem *bt_conn_get_pkts(struct bt_conn *conn);
void bt_conn_tx_processor(void);
/* To be called by upper layers when they want to send something.
* Functions just like an IRQ.
*/
void bt_conn_data_ready(struct bt_conn *conn);